Abstract:Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well-defined saturated dual-porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water.
Protease impurities in raw materials used in enzyme immunoassays can impair assay performance. This risk may be greatly decreased if incoming protein-based raw materials are controlled for protease impurities or if protease inhibitors are used in the assay formulations. As many different proteases might occur in protein raw materials, it is desirable to have a general test for protease contamination. With the help of a fluorescence resonance energy transfer peptide library containing about 2.5 million peptides, we have succeeded in establishing such a system, with sensitivity in the nanogram range for known proteases. Protease contamination was found to differ between different raw materials and was correlated with assay performance. Protease activity in contaminated raw materials could be suppressed to various degrees with different chemical inhibitors or by thermal treatment. This technology is suited for the control of incoming protein-based raw materials used for enzyme immunoassays, as well as for the optimization of the use of protein inhibitors or thermal treatment of protein-based raw materials for the inactivation of proteases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.