Understanding genetic consequences of habitat fragmentation is crucial for the management and conservation of wildlife populations, especially in case of species sensitive to environmental changes and landscape alteration. In central Europe, the Alps are the core area of black grouse Tetrao tetrix distribution. There, black grouse dispersal is limited by high altitude mountain ridges and recent black grouse habitats are known to show some degree of natural fragmentation. Additionally, substantial anthropogenic fragmentation has occurred within the past ninety years. Facing losses of peripheral subpopulations and ongoing range contractions, we explored genetic variability and the fine‐scale genetic structure of the Alpine black grouse metapopulation at the easternmost fringe of the species’ Alpine range. Two hundred and fifty tissue samples and non‐invasive faecal and feather samples of eleven a priori defined subpopulations were used for genetic analysis based on nine microsatellite loci. Overall, eastern Alpine black grouse show similar amounts of genetic variation (HO = 0.65, HE = 0.66) to those found in more continuous populations like in Scandinavia. Despite of naturally and anthropogenically fragmented landscapes, genetic structuring was weak (global FST < 0.05), suggesting that the actual intensity of habitat fragmentation does not completely hamper dispersal, but probably restricts it to some extent. The most peripheral subpopulations at the edge of the species range show signs of genetic differentiation. The present study gives new insights into the population genetic structure of black grouse in the eastern Alps and provides a more fine‐scale view of genetic structure than previously available. Our findings will contribute to monitor the current and future status of the population under human pressures and to support supra‐regional land use planning as well as decision making processes in responsibilities of public administration.
The Northern Goshawk Accipiter gentilis is a medium‐sized bird of prey inhabiting boreal and temperate forests. It has a Holarctic distribution with 10 recognized subspecies. Traditionally, it has been placed within the Accipiter [gentilis] superspecies, together with Henst's Goshawk A. henstii, the Black Sparrowhawk A. melanoleucus, and Meyer's Goshawk A. meyerianus. While those four taxa are geographically separated from each other, hence referred to as allospecies, their phylogenetic relationships are still unresolved. In the present study, we performed phylogenetic analyses on the Accipiter [gentilis] superspecies, including all recognized subspecies of all four allospecies, using partial sequences of two marker loci of the mitochondrial genome, the control region and the cytochrome b gene. We found a deep split within A. gentilis into two monophyletic groups, a Nearctic clade (three subspecies) and a Palearctic clade (seven subspecies). The Palearctic clade is closely related to A. meyerianus, and together these two were more closely related to the other Old World taxa A. henstii and A. melanoleucus, which in turn were reciprocally monophyletic sister species. As a consequence, A. gentilis as usually conceived (including all Holarctic subspecies) was non‐monophyletic. We found a strong genetic homogeneity within Palearctic A. gentilis despite the fact that it comprises seven subspecies distributed from the Atlantic coast in Western Europe to Eastern Siberia. Relationships between the four clades could not be resolved unambiguously. Our results, if confirmed by more integrative data, would imply a taxonomic revision of Nearctic A. gentilis into a separate allospecies, Accipiter [gentilis] atricapillus.
Genetic differentiation plays an essential role in the assessment of metapopulation systems of conservation concern. Migration rates affect the degree of genetic differentiation between subpopulations, with increasing genetic differentiation leading to increasing extinction risk. Analyses of genetic differentiation repeated over time together with projections into the future are therefore important to inform conservation. We investigated genetic differentiation in a closed metapopulation system of an obligate forest grouse, the Western capercaillie Tetrao urogallus, by comparing microsatellite population structure between a historic and a recent time period. We found an increase in genetic differentiation over a period of approximately 15 years. Making use of forward simulations accounting for population dynamics and genetics from both time periods, we explored future genetic differentiation by implementing scenarios of differing migration rates. Using migration rates derived from the recent dataset, simulations predicted further increase of genetic differentiation by 2050. We then examined effects of two realistic yet hypothetical migration scenarios on genetic differentiation. While isolation of a subpopulation led to overall increased genetic differentiation, the re-establishment of connectivity between two subpopulations maintained genetic differentiation at recent levels. Our results emphasize the importance of maintaining connectivity between subpopulations in order to prevent further genetic differentiation and loss of genetic variation. The simulation set-up we developed is highly adaptable and will aid researchers and conservationists alike in anticipating consequences of conservation strategies for metapopulation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.