ABSTRACT:For several years, our group has been developing quinoxalinic compounds. Two of them, N-methyl-1-(2-phenethyl)imidazo[1,2-a]quinoxalin-4-amine (EAPB0203) and 1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine (EAPB0503), have emerged as the most promising anticancer drugs. In the present work, we determined metabolism pathways using liver microsomes from four mammalian species including human. We identified the cytochrome P450 isoform(s) involved in the metabolism and then investigated the pharmacokinetics and metabolism of EAPB0203 and EAPB0503 in rat after intravenous and intraperitoneal administration. Biotransformation of the compounds involved demethylation and hydroxylation reactions. Rat and dog metabolized the compounds at a higher rate than mouse and human. In all species, CYP1A1/2 and CYP3A isoforms were the predominant enzymes responsible for the metabolism. From human liver microsomes, unbound intrinsic clearances were approximately 56 ml/(min ⅐ g) protein. EAPB0203 and EAPB0503 were extensively bound to human plasma proteins, mainly human serum albumin (HSA) (ϳ98-99.5%). Thus, HSA could act as carrier of these compounds in human plasma. Scatchard plots showed patterns in which the plots yielded upwardly convex hyperbolic curves. On the basis of the Hill coefficients, there appears to be interaction between the binding sites of HSA, suggesting positive cooperativity. The main in vitro metabolites were identified in vivo. Total clearances of EAPB0203 and EAPB0503 [3.2 and 2.2 l/(h ⅐ kg), respectively] were notably lower than the typical cardiac plasma output in rat. The large volumes of distribution of these compounds (4.3 l/kg for EAPB0203 and 2.5 l/kg for EAPB0503) were consistent with extensive tissue binding. After intraperitoneal administration, bioavailability was 22.7% for EAPB0203 and 35% for EAPB0503 and a significant hepatic first-pass effect occurred.
The present study was conducted to assess the structures of the main unknown oxygenated metabolites of EAPB0203. The first step was to assign all the (1)H and (13)C NMR of both EAPB0203 and its demethylated metabolite (EAPB0202) to the corresponding atoms in their molecular structures and to elucidate the fragmentation pathways for the [M + H](+) ions of these compounds using high-resolution mass spectrometry (MS). MS/MS spectra showed that both protonated molecules possessing an even number of electrons were unexpectedly losing radicals such as H(•), CH(3)(•), or even C(7)H(7)(•) giving stable radical cations. In vitro metabolism studies were investigated in rat and dog liver microsomes and in the filamentous fungus Cunninghamella elegans. Structural elucidation of six oxygenated metabolites was performed based on the following: (i) their fragmentation pathways in liquid chromatography-MS/MS (LC-MS/MS) analyses; (ii) comparison of their changes in their molecular masses and fragment ions with those of the parent drugs; and (iii) the results of online H/D exchange experiments that provided additional evidence in differentiating hydoxylated metabolites from N-oxides. Structures of the metabolites were elucidated by LC-MS/MS and comparison with synthetic standards; structures of these standards were confirmed using one- and two-dimensional (1)H NMR spectroscopies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.