Purpose To quantify regional lung ventilation in patients with chronic obstructive pulmonary disease (COPD) by using free-breathing dynamic fluorinated (fluorine 19 [F]) gas magnetic resonance (MR) imaging. Materials and Methods In this institutional review board-approved prospective study, 27 patients with COPD were examined by using breath-hold F gas wash-in MR imaging during inhalation of a normoxic fluorinated gas mixture (perfluoropropane) and by using free-breathing dynamicF gas washout MR imaging after inhalation of the gas mixture was finished for a total of 25-30 L. Regional lung ventilation was quantified by using volume defect percentage (VDP), washout time, number of breaths, and fractional ventilation (FV). To compare different lung function parameters, Pearson correlation coefficient and Fisher z transformation were used, which were corrected for multiple comparisons with the Bonferroni method. Results Statistically significant correlations were observed for all evaluated lung function test parameters compared with median and interquartile range of F washout parameters. An inverse linear correlation of median number of breaths (r = -0.82; P< .0001) and median washout times (r = -0.77; P < .0001) with percentage predicted of forced expiratory volume in 1 second (FEV) was observed; correspondingly median FV (r = 0.86; P < .0001) correlated positively with percentage predicted FEV. Comparing initial with late phase, median VDP of all subjects decreased from 49% (25th-75th percentile, 35%-62%) to 6% (25th-75th percentile, 2%-10%; P < .0001). VDP at the beginning of the gas wash-in phase (VDP) significantly correlated with percentage predicted FEV (r = -0.74; P = .0028) and FV (r = 0.74; P = .0002). Median FV was significantly increased in ventilated regions (11.1% [25th-75th percentile, 6.8%-14.5%]) compared with the defect regions identified by VDP (5.8% [25th-75th percentile, 4.0%-7.4%]; P < .0001). Conclusion Quantification of regional lung ventilation by using dynamic F gas washout MR imaging in free breathing is feasible at 1.5 T even in obstructed lung segments. RSNA, 2017 Online supplemental material is available for this article.
Background Anterior cruciate ligament reconstruction surgery is one of the most common orthopedic procedures. One of the main factors that influence the outcome is regaining strength in the postoperative phase. Because anterior cruciate ligament reconstruction surgeries are often performed in young patients, we combined the concept of prehabilitation with an app-based serious gaming approach to improve maximal strength postoperatively. Objective Our objective was to conduct a prospective randomized trial to evaluate whether an app-based active muscle training program (GenuSport Knee Trainer) can improve postoperative strength by starting rehabilitation immediately after primary anterior cruciate ligament reconstruction surgery. Methods We designed a pilot study in which we randomly assigned patients receiving primary anterior cruciate ligament reconstruction to either the serious gaming training (intervention) group or a conventional rehabilitation (control) group. Except for the serious gaming-based training, both groups followed the same postoperative treatment protocol. Outcome parameters were absolute and relative change in maximal strength, as well as the International Knee Documentation Committee Subjective Knee evaluation form, Knee Injury and Osteoarthritis Outcome Score, and Lysholm Knee Score. Results In total 26 patients agreed to participate (14 patients in the intervention group and 12 patients in the control group, 1 of whom was lost to follow-up). We noted a difference in absolute maximum strength between the exergaming intervention and the control groups. Mean maximum strength preoperatively was 155.1 (SD 79.2) N in the intervention group (n=14) and 157.0 (SD 40.8) N in the control group (n=11). Postoperative mean maximum strength was 212.8 (SD 78.5) N in the intervention group and 154.5 (SD 27.1) N in the control group. Mean absolute change in maximum strength was 57.7 (SD 95.2) N in the intervention group and –4.8 (22.2) N in the control group. The analysis of covariance model with absolute change as the dependent variable and treatment group and baseline maximum strength as covariates showed a relevant difference in relative change between treatment groups (intervention – control) of 59.7 N (95% CI 10.1-109.3; P=.02). Similarly to the absolute increase, the relative change in maximum strength was relevantly higher in the exergaming group. The mean relative change in maximum strength was 1.7 (SD 1.17) in the intervention group and 1 (SD 0.13) in the control group. No adverse events or problems were reported during the study period. Conclusions Implementation of an app-based active muscle training program in the early postoperative therapy scheme was associated with an improvement in maximal strength. Therefore, we considered the use of GenuSport training after anterior cruciate ligament reconstruction to be a helpful complement to rehabilitation after anterior cruciate ligament reconstruction surgery to improve strength in the early postoperative phase. To our knowledge this was the first study to analyze immediate postoperative serious gaming-based training with the GenuSport device based on strength improvement.
The coronavirus disease 2019 (COVID-19) pandemic impacts the conduct of clinical trials and challenges clinical trial sponsors. WHAT QUESTION DID THIS STUDY ADDRESS? What is the impact of the COVID-19 pandemic on the initiation of phase II and III clinical trials, both overall and for non-COVID-19 related trials, in Europe and the United States? WHAT DOES THIS STUDY ADD TO OUR KNOW-LEDGE? This study indicates that the COVID-19 pandemic affected the initiation of clinical trials overall and of non-COVID-19 trials. Although an increase in the overall numbers of clinical trials could be observed both in Europe and the United States, the number of initiated non-COVID-19 trials is reduced, with a slightly larger relative decrease in the United States. Short-term trends are also described. HOW MIGHT THIS CHANGE CLINICAL PHARMA-COLOGY OR TRANSLATIONAL SCIENCE? The investigation and findings are a starting point to understand the impact of the COVID-19 pandemic on clinical trial initiation. The analysis allows to be rerun to capture more recent developments during and after the pandemic.
Registry-based randomized controlled trials (RCTs) are presumed to include a less-selected patient population and thus to have enhanced generalizability compared to conventional RCTs. However, this view disregards the levels of patient selection in registry-based RCTs: the registry selection level and the trial selection level. At both levels, systematic selection can occur and generalizability can be diminished. Nevertheless, using a registry as a basis for recruitment, randomization, and data collection results in an advantage: the trial selection takes place within the registry framework, where baseline characteristics of non-enrolled patients are automatically documented as well. By comparing the baseline variables of the enrolled and non-enrolled patients, the trial selection can always be investigated, which gives a sound basis for discussing the generalizability to the registry population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.