Abstract. The increasing usage of new technologies implies changes for personality research. First, human behavior becomes measurable by digital data, and second, digital manifestations to some extent replace conventional behavior in the analog world. This offers the opportunity to investigate personality traits by means of digital footprints. In this context, the investigation of the personality trait sensation seeking attracted our attention as objective behavioral correlates have been missing so far. By collecting behavioral markers (e.g., communication or app usage) via Android smartphones, we examined whether self-reported sensation seeking scores can be reliably predicted. Overall, 260 subjects participated in our 30-day real-life data logging study. Using a machine learning approach, we evaluated cross-validated model fit based on how accurate sensation seeking scores can be predicted in unseen samples. Our findings highlight the potential of mobile sensing techniques in personality research and show exemplarily how prediction approaches can help to foster an increased understanding of human behavior.
Figure 1: Overview of our four UI variants, showing the user's written text (black font, i.e. a diegetic prompt), the suggestions (text highlighted in green, and options in the list), and a popup text box that allows users to input an instruction as a zero-shot prompt to the system (i.e. a non-diegetic prompt).
This paper reports on an in-depth study of electrocardiogram (ECG) biometrics in everyday life. We collected ECG data from 20 people over a week, using a non-medical chest tracker. We evaluated user identification accuracy in several scenarios and observed equal error rates of 9.15% to 21.91%, heavily depending on 1) the number of days used for training, and 2) the number of heartbeats used per identification decision. We conclude that ECG biometrics can work in the wild but are less robust than expected based on the literature, highlighting that previous lab studies obtained highly optimistic results with regard to real life deployments. We explain this with noise due to changing body postures and states as well as interrupted measures. We conclude with implications for future research and the design of ECG biometrics systems for real world deployments, including critical reflections on privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.