Diabetes is a major risk factor for cardiovascular disease, affecting both endothelial and smooth muscle cells. Store-operated Ca 2+ channels (SOCCs) have been implicated in many diabetic complications. Vascular dysfunction is common in patients with diabetes, but the role of SOCCs in diabetic vasculopathy is still unclear. Our research aimed to investigate the effects of high glucose (HG) on store-operated Ca 2+ entry (SOCE) in small arteries. Small mesenteric arteries from type 2 diabetic Zucker fatty rats (ZDF) versus their non-diabetic controls (Zucker lean, ZL) were examined in a pressurized myograph. Vascular smooth muscle cells (VSMC) were isolated and intracellular Ca 2+ was measured (Fura 2-AM). A specific protocol to deplete intracellular Ca 2+ stores and thereby open SOCCs, as well as pharmacological SOCE inhibitors (SKF-96365, BTP-2), were used to artificially activate and inhibit SOCE, respectively. High glucose (40 mmol/L) relaxed arteries in a SKF-sensitive manner.Diabetic arteries exhibited reduced HG-induced relaxation, as well as reduced contraction after Ca 2+ replenishment. Further, the rise in intracellular Ca 2+ on account of SOCE is diminished in diabetic versus non-diabetic VSMCs and was insensitive to HG in diabetic VSMCs. The expression of SOCC proteins was measured, detecting a downregulation of Orai1 in diabetes. In conclusion, diabetes leads to a reduction of SOCE and SOCE-induced contraction, which is unresponsive to HG-mediated inhibition. The reduced expression of Orai1 in diabetic arteries could account for the observed reduction in SOCE. K E Y W O R D Sdiabetes, high glucose, small mesenteric arteries, store-operated calcium entry, vascular smooth muscle, ZDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.