Abstract. Boolean Satisfiability (SAT) solvers have been successfully applied to a wide range of practical applications, including hardware model checking, software model finding, equivalence checking, and planning, among many others. SAT solvers are also the building block of more sophisticated decision procedures, including Satisfiability Modulo Theory (SMT) solvers. The large number of applications of SAT yields ever more challenging problem instances, and motivate the development of more efficient algorithms. Recent work studied hybrid approaches for SAT, which involves integrating incomplete and complete SAT solvers. This paper proposes a number of improvements to hybrid SAT solvers. Experimental results demonstrate that the proposed optimizations are effective. The resulting algorithms in general perform better and, more importantly, are significantly more robust.
Several propositional fragments have been considered so far as target languages for knowledge compilation and used for improving computational tasks from major AI areas (like inference, diagnosis and planning); among them are the ordered binary decision diagrams, prime implicates, prime implicants, "formulae" in decomposable negation normal form. On the other hand, the validity problem val(QPROP P S) for Quantified Boolean Formulae (QBF) has been acknowledged for the past few years as an important issue for AI, and many solvers have been designed. In this paper, the complexity of restrictions of the validity problem for QBF obtained by imposing the matrix of the input QBF to belong to propositional fragments used as target languages for compilation, is identified. It turns out that this problem remains hard (PSPACE-complete) even under severe restrictions on the matrix of the input. Nevertheless some tractable restrictions are pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.