Image processing algorithms and a prototypical research software tool have been developed for visualization and quantitative analysis of vessels in data sets from computed tomography and magnetic resonance imaging. The software is based on a sequence of processing steps, which are as follows: (a) vessel segmentation based on a region growing algorithm, (b) interactive "premasking" to optionally exclude interfering structures close to the vessels of interest, (c) distance transform-based skeletonization, (d) multiplanar reformation orthogonal to the vessel path, (e) identification of the lumen boundary on the orthogonal cross-section images, and (f) morphometric measurements. The development of the algorithmic components and the application user interface has been carried out in close cooperation with clinical users to achieve a high degree of usability and flexible support of work flow. The software has been successfully applied to the intracranial arteries, carotid arteries, and abdominal and thoracic aorta, as well as the renal, coronary, and peripheral arteries.
Visualization and image processing of medical datasets has become an essential task for clinical diagnosis support as well as for treatment planning. In order to enable a physician to use and evaluate algorithms within a clinical setting, easily applicable software prototypes with a dedicated user interface are essential. However, substantial programming knowledge is still required today when using powerful open source libraries such as the Visualization Toolkit (VTK) or the Insight Toolkit (ITK). Moreover, these toolkits provide only limited graphical user interface functionality. In this paper, we present the visual programming and rapid prototyping platform MeVisLab which provides flexible and simple handling of visualization and image processing algorithms of VTK/ITK, Open Inventor and the MeVis Image Library by modular visual programming. No programming knowledge is required to set up image processing and visualization pipelines. Complete applications including user interfaces can be easily built within a general framework. In addition to the VTK/ITK features, MeVisLab provides a full integration of the Open Inventor library and offers a state-of-the-art integrated volume renderer. The integration of VTK/ITK algorithms is performed automatically: an XML structure is created from the toolkits' source code followed by an automatic module generation from this XML description. Thus, MeVisLab offers a one stop solution integrating VTK/ITK as modules and is suited for rapid prototyping as well as for teaching medical visualization and image analysis. The VTK/ITK integration is available as package of the free version of MeVisLab
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.