International audienceIn this paper, we study the asymptotic variance of sample path averages for inhomogeneous Markov chains that evolve alternatingly according to two different π-reversible Markov transition kernels P and Q. More specifically, our main result allows us to compare directly the asymptotic variances of two inhomogeneous Markov chains associated with different kernels Pi and Qi, i ∈ {0, 1}, as soon as the kernels of each pair (P0, P1) and (Q0, Q1) can be ordered in the sense of lag-one autocovariance. As an important application, we use this result for comparing different data-augmentation-type Metropolis- Hastings algorithms. In particular, we compare some pseudo-marginal algorithms and propose a novel exact algorithm, referred to as the random refreshment algorithm, which is more efficient, in terms of asymptotic variance, than the Grouped Independence Metropolis- Hastings algorithm and has a computational complexity that does not exceed that of the Monte Carlo Within Metropolis algorith
Models with intractable likelihood functions arise in areas including network analysis and spatial statistics, especially those involving Gibbs random fields. Posterior parameter estimation in these settings is termed a doubly-intractable problem because both the likelihood function and the posterior distribution are intractable. The comparison of Bayesian models is often based on the statistical evidence, the integral of the un-normalised posterior distribution over the model parameters which is rarely available in closed form. For doubly-intractable models, estimating the evidence adds another layer of difficulty. Consequently, the selection of the model that best describes an observed network among a collection of exponential random graph models for network analysis is a daunting task. Pseudolikelihoods offer a tractable approximation to the likelihood but should be treated with caution because they can lead to an unreasonable inference. This paper specifies a method to adjust pseudolikelihoods in order to obtain a reasonable, yet tractable, approximation to the likelihood. This allows implementation of widely used computational methods for evidence estimation and pursuit of Bayesian model selection of exponential random graph models for the analysis of social networks. Empirical comparisons to existing methods show that our procedure yields similar evidence estimates, but at a lower computational cost.
Exponential random graph models are an important tool in the statistical analysis of data. However, Bayesian parameter estimation for these models is extremely challenging, since evaluation of the posterior distribution typically involves the calculation of an intractable normalizing constant. This barrier motivates the consideration of tractable approximations to the likelihood function, such as the pseudolikelihood function, which offers an approach to constructing such an approximation. Naive implementation of what we term a pseudo-posterior resulting from replacing the likelihood function in the posterior distribution by the pseudolikelihood is likely to give misleading inferences. We provide practical guidelines to correct a sample from such a pseudo-posterior distribution so that it is approximately distributed from the target posterior distribution and discuss the computational and statistical efficiency that result from this approach. We illustrate our methodology through the analysis of real-world graphs. Comparisons against the approximate exchange algorithm of Caimo and Friel (2011) are provided, followed by concluding remarks.
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisticated Markov chain Monte Carlo (MCMC) method, the exchange algorithm (Murray et al., 2006), which requires simulations from the likelihood function at each iteration. The purpose of this paper is to consider an approach to dramatically reduce this computational overhead. To this end we introduce a novel class of algorithms which use realizations of the GRF model, simulated offline, at locations specified by a grid that spans the parameter space. This strategy speeds up dramatically the posterior inference, as illustrated on several examples. However, using the pre-computed graphs introduces a noise in the MCMC algorithm, which is no longer exact. We study the theoretical behaviour of the resulting approximate MCMC algorithm and derive convergence bounds using a recent theoretical development on approximate MCMC methods.
This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an unknown fraction of fixed size of the available data that is randomly refreshed throughout the algorithm. Inspired by the Approximate Bayesian Computation (ABC) literature, the subsampling process is guided by the fidelity to the observed data, as measured by summary statistics. The resulting algorithm, Informed Sub-Sampling MCMC (ISS-MCMC), is a generic and flexible approach which, contrary to existing scalable methodologies, preserves the simplicity of the Metropolis-Hastings algorithm. Even though exactness is lost, i.e the chain distribution approximates the posterior, we study and quantify theoretically this bias and show on a diverse set of examples that it yields excellent performances when the computational budget is limited. If available and cheap to compute, we show that setting the summary statistics as the maximum likelihood estimator is supported by theoretical arguments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.