Polyolefin, including polypropylene (PP), constitutes an important class of materials. In particular, the recent interest in recycling plastic wastes necessitates their characterization as well as their degradation mechanism being understood. PP materials characterization by mass spectrometry, including polymer and additives parts, is not direct and generally involves a pyrolysis step to produce ionizable species. In this study, we extended the use of atmospheric solid analysis probe (ASAP) in combination with traveling wave ion mobility mass spectrometry (TWIM-MS) for the characterization of PP materials, including polymer as well as additives. Different commercial PP samples, from polymer standard to plastic item, were studied. The use of ASAP allow analysis to be done without any sample preparation, while TWIM-MS permitted a clear separation of polymer ions and additive signals. Several series of polymer pyrolysis residues, similar to those produced by classic pyrolysis, were obtained. Moreover, additive characterization has been done and supported by accurate mass measurements and tandem mass spectrometry experiments. Finally, this strategy put in evidence the role of additives in polymer degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.