One of the main charging materials of the Linz–Donawitz oxygen steelmaking process (LD) is scrap. Scrap acts as a coolant for the exothermic reactions inside the LD vessel and as an iron source in addition to hot metal. The optimization of the LD process is focused, amongst other factors, on thermodynamic and kinetic modelling. The results of simulations have to be validated in close to reality laboratory-scale experiments. A study was made on the dissolution behavior of common steel scrap in carbon-saturated hot metal which is charged into LD converters. In order to examine the effect of several parameters on diffusive scrap melting, the difference between stagnant and dynamic dissolution as well as the influence of the hot metal temperature were investigated. Using a literature-based equation the mass transfer coefficient of carbon between the solid scrap and the liquid hot metal was evaluated. The ranges of values of the ablation rate and the mass transfer coefficient for the appropriate systems are pointed out, resulting in a significant dependence of the investigated parameters.
In the current economic climate, the recycling of steel scrap is become one of the most interesting tasks for the optimization of integrated steel plants. Steelmaking aspects such as jet/bath interaction, slag formation or foaming, lime dissolution as well as slag/metal reactions have received more attention in recent years than the melting and dissolution phenomena of steel scrap in molten steel baths. Since the dynamic modeling of steelmaking processesespecially the Linz Donawitz oxygen steelmaking process (LD) -is becoming more important, interest in the melting and dissolution behaviour is increasing. Several researchers have investigated the complex transactions of coupled heat and mass transfer in the past. Small-scale experiments are carried out under conditions where only mass transfer or heat transfer were considered. A few authors have reported on pilot-scale investigations or commercial converters. The coupled heat and mass transfer has also been analyzed by several authors in mathematical models and numerical simulations. The present paper reviews the research on steel scrap melting and dissolution done in the last 50 years. A summary of all reported heat and mass transfer coefficients will be given and the differences between natural and forced convection will be explained. In addition, an overview of recently published numerical simulation describing the problem will give an outlook for future work.
The Linz–Donawitz (LD) converter is still the dominant process for converting hot metal into crude steel with the help of technically pure oxygen. Beside hot metal, scrap is the most important charging material which acts as an additional iron source and coolant. Because of the irrevocable importance of the process, there is continued interest in a dynamic simulation of the LD process, especially regarding the savings of material and process costs with optimized process times. Based on a thermodynamic and kinetic Matlab® coded model, the influences of several scrap parameters on its melting and dissolution behavior were determined, with a special focus on establishing the importance of specific factors on the crude steel composition and bath temperature after a defined blowing period to increase the accuracy of the process model. The calculations reported clearly indicate that the dynamic converter model reacts very sensitively to the chemical composition of the scrap as well as the charged scrap mass and size. Those results reflect the importance of experiments for validation on the diffusive scrap melting model in further research work. Based on that, reliable conclusions could be drawn to improve the theoretical and practical description of the dissolution and melting behavior of scrap in dynamic converter modelling.
The oxygen steelmaking process in a Linz-Donawitz (LD) converter is responsible for more than 70% of annual crude steel production. Optimization of the process control and numerical simulation of the LD converter are some of the current challenges in ferrous metallurgical research. Because of the process conditions and oxidation of impurities of the hot metal, a lot of chemical heat is generated. Therefore, steel scrap is charged as a coolant with the economical side aspect of its recycling. One of the more complex aspects is, among others, the dissolution and melting behaviour of the scrap in carbon-saturated hot metal. Heat and mass transfer act simultaneously, which has already been investigated by several researchers using different experimental approaches. The appearances at the interface between solid steel and liquid hot metal during diffusive scrap melting have been described theoretically but never investigated in detail. After an experimental investigation under natural and forced convective conditions, the samples were further investigated with optical microscopy and electron probe microanalysis (EPMA). A steep carbon concentration gradient in the liquid appeared, which started at an interface carbon concentration equal to the concentration on the solid side of the interface. Moreover, the boundary layer thickness moved towards zero, which symbolized that the boundary layer theory based on thermodynamic equilibrium was not valid. This fact was concluded through the prevailing dynamic conditions formed by natural and forced convection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.