The heterodimeric laminin receptor α6β4 integrin plays a central role in the promotion of tumor cell growth, invasion, and organotropic metastasis. As an overproduction of the integrin is often linked to a poor prognosis, the inhibition of integrin α6β4 binding to laminin is of high therapeutical interest. Here, we report on the combination of a cell-systematic evolution of ligands by exponential enrichment and a bead-based selection resulting in the first aptamer inhibiting the interaction between α6β4 integrin and laminin-332. This Integrin α6β4-specific DNA Aptamer (IDA) inhibits the adhesion of prostate cancer cells (PC-3) to laminin-332 with an IC50 value of 149 nmol/l. The Kd value concerning the aptamer's interaction with PC-3 cells amounts to 137 nmol/l. Further characterization showed specificity to α6 integrins and a half-life in murine blood plasma of 6 hours. Two truncated versions of the aptamer retained their binding capacity, but lost their ability to inhibit the interaction between laminin-332 and PC-3 cells. Confocal laser scanning microscope studies revealed that the aptamer was internalized into PC-3-cells. Therefore, in addition to the adhesion-blocking function of this aptamer, IDA could also be applied for the delivery of siRNA, microRNA or toxins to cancer cells presenting the integrin α6β4.
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.