We study the mean first-passage time τ for the barrier crossing of a single massive particle with non-Markovian memory by Langevin simulations in one dimension. In the Markovian limit of short memory time τ, the expected Kramers turnover between the overdamped (high-friction) and the inertial (low-friction) limits is recovered. Compared to the Markovian case, we find barrier crossing to be accelerated for intermediate memory time, while for long memory time, barrier crossing is slowed down and τ increases with τ as a power law τ∼τ. Both effects are derived from an asymptotic propagator analysis: while barrier crossing acceleration at intermediate memory can be understood as an effective particle mass reduction, slowing down for long memory is caused by the slow kinetics of energy diffusion. A simple and globally accurate heuristic formula for τ in terms of all relevant time scales of the system is presented and used to establish a scaling diagram featuring the Markovian overdamped and the Markovian inertial regimes, as well as the non-Markovian intermediate memory time regime where barrier crossing is accelerated and the non-Markovian long memory time regime where barrier crossing is slowed down.
SignificanceThe interpretation of rates of reactions that take place in a solvent is complicated because of the entanglement of free-energy and history-dependent friction effects. In this context, the dihedral dynamics of butane has played a paradigmatic role since it is simple yet relevant for conformational transitions in polymers and proteins. We directly extract the friction that governs the dihedral dynamics in butane from simulations. We show that ∼89% of the total friction cannot be described as solvent friction and is caused by degrees of freedom that are orthogonal to the dihedral reaction coordinate. This shows that the hydrodynamic estimate of friction severely fails, even in the simplest molecular reaction.
We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the α-helix forming polypeptide alanine9 for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote–Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.
Absorption spectra of liquid water at 300 K are calculated from both classical and density functional theory molecular dynamics simulation data, which together span from 1 MHz to hundreds of THz, agreeing well with experimental data qualitatively and quantitatively over the entire range, including the IR modes, the microwave peak, and the intermediate THz bands. The spectra are decomposed into single-molecular and collective components, as well as into components due to molecular reorientations and changes in induced molecular dipole moments. These decompositions shed light on the motions underlying the librational and translational (hydrogen-bond stretching) bands at 20 and 5 THz, respectively; interactions between donor protons and acceptor lone pair electrons are shown to be important for the line shape in both librational and translational regimes, and in- and out-of-phase librational dimer modes are observed and explored.
Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.