It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple stellar populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr old) of our Galaxy and its close companions, but so far no model for the origin of MPs is able to reproduce all the relevant observations. To gain new insights into this phenomenon, we have undertaken a photometric Hubble Space Telescope survey to study clusters with masses comparable to that of old GCs, where MPs have been identified, but with significantly younger ages. Nine clusters in the Magellanic Clouds with ages between ∼ 1.5-11 Gyr have been targeted in this survey. We confirm the presence of multiple populations in all clusters older than 6 Gyr and we add NGC 1978 to the group of clusters for which MPs have been identified. With an age of ∼ 2 Gyr, NGC 1978 is the youngest cluster known to host chemical abundance spreads found to date. We do not detect evident star-to-star variations for slightly younger massive clusters (∼ 1.7 Gyr), thus pointing towards an unexpected age dependence for the onset of multiple populations. This discovery suggests that the formation of MPs is not restricted to the early Universe and that GCs and young massive clusters share common formation and evolutionary processes.
We use the Geneva Syclist isochrone models that include the effects of stellar rotation to investigate the role that rotation has on the resulting colour-magnitude diagram (CMD) of young and intermediate age clusters. We find that if a distribution of rotation velocities exists within the clusters, rotating stars will remain on the main sequence (MS) for longer, appearing to be younger than non-rotating stars within the same cluster. This results in an extended main sequence turn-off (eMSTO) that appears at young ages (∼ 30 Myr) and lasts beyond 1 Gyr. If this eMSTO is interpreted as an age spread, the resulting age spread is proportional to the age of the cluster, i.e. young clusters (< 100 Myr) appear to have small age spreads (10s of Myr) whereas older clusters (∼ 1 Gyr) appear to have much large spreads, up to a few hundred Myr. We compare the predicted spreads for a sample of rotation rates to observations of young and intermediate age clusters, and find a strong correlation between the measured 'age spread' and the age of the cluster, in good agreement with models of stellar rotation. This suggests that the 'age spreads' reported in the literature may simply be the result of a distribution of stellar rotation velocities within clusters.Several studies have aimed to search for signs for prolonged star formation histories or ongoing star formac 2015 RAS
Recent discoveries have put the picture of stellar clusters being simple stellar populations into question. In particular, the colormagnitude diagrams of intermediate age (1-2 Gyr) massive clusters in the Large Magellanic Cloud (LMC) show features that could be interpreted as age spreads of 100-500 Myr. If multiple generations of stars are present in these clusters then, as a consequence, young (<1 Gyr) clusters with similar properties should have age spreads of the same order. In this paper we use archival Hubble Space Telescope (HST) data of eight young massive LMC clusters (NGC 1831, NGC 1847, NGC 1850, NGC 2004, NGC 2100, NGC 2136, NGC 2157 and NGC 2249 to test this hypothesis. We analyzed the color-magnitude diagrams of these clusters and fitted their star formation history to derive upper limits of potential age spreads. We find that none of the clusters analyzed in this work shows evidence for an extended star formation history that would be consistent with the age spreads proposed for intermediate age LMC clusters. Tests with artificial single age clusters show that the fitted age dispersion of the youngest clusters is consistent with spreads that are purely induced by photometric errors. As an additional result we determined a new age of NGC 1850 of ∼100 Myr, significantly higher than the commonly used value of about 30 Myr, although consistent with early HST estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.