Expanded repetoire: Synthetic amino acids translated into propeptides dramatically increase the chemical diversity of the two-component lantibiotic lichenicidin. This opens new routes towards novel and unique peptide antibiotic sequences, which could display features important for medical applications.
Chorismate is an important and central metabolite branching off to the biosyntheses of aromatic amino acids and p-aminobenzoic acid (pABA), a component of the vitamin folic acid. Here we report on a novel variation of a unified catalytic mechanism in Bacillus subtilis pABA biosynthesis that includes the formation of a new intermediate, 2-amino-2-deoxyisochorismate (ADIC), thus significantly differing from the mechanism in Escherichia coli. In B. subtilis, chorismate is converted to ADIC, which is catalyzed by aminodeoxychorismate synthase (ADCS). In a second step, ADIC is converted to aminodeoxychorismate (ADC) by addition of ammonia to C4, also catalyzed by ADCS. The third step is the aminodeoxychorismate lyase-catalyzed elimination of pyruvate from ADC. To our knowledge, B. subtilis aminodeoxychorismate synthase is the first enzyme exhibiting ADIC synthase activity in primary metabolism. We further provide evidence that pABA biosynthesis via ADIC might be a common mechanism for several other microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.