Objective: Mice deficient of the serotonin transporter (5-HTT ko) mice have a reduced brain serotonin content and develop lateonset obesity. To elucidate the pathophysiology of this obesity, we analyzed the expression of the interrelated weight-regulatory molecules: brain-derived neurotrophic factor (BDNF) and leptin receptor (LR) in brain areas associated with nutrition and activity. Research Design and Methods: We investigated feeding behavior, physical activity and metabolic parameters of 5-HTT ko and wild-type mice and measured the expression of BDNF and LR in brain areas associated with nutrition and activity using quantitative real-time PCR. The influence of age, gender and fasting was analyzed. Results: Male 5-HTT ko mice developed obesity without hyperphagia from the age of 5 months. Physical activity was reduced in old male, but not old female, 5-HTT ko mice. The BDNF gene expression in frontal cortex was elevated in young, but reduced in old 5-HTT ko mice. Fasting failed to increase the BDNF gene expression in frontal cortex of young 5 HTT ko mice and in the hypothalamus in old 5-HTT ko mice. The fasting-induced hypothalamic increase of LR was absent in both young and old 5-HTT ko mice. Conclusions: We propose that low brain serotonin level due to the 5-HTT ko genotype leads to reduced physical activity and low BDNF, which together with the lack of fasting-induced hypothalamic BDNF and LR production results in late-onset obesity. Although lack of the 5-HTT is a genetic vulnerability factor for obesity, female gender is protective.
Mice lacking the serotonin-transporter (5-HTT-/-mice) develop reduced thermal hyperalgesia after nerve injury, concomitant with reduced serotonin (5-HT) levels in nervous tissue. Here we investigated pain behaviour in 5-HTT-/-mice compared to their wild type littermates after hind paw inflammation induced by complete Freund's adjuvant (CFA). We used standard tests for pain behaviour, high performance liquid chromatography for measurement of 5-HT, and immunohistochemistry of hind paw skin tissue and L5 dorsal root ganglia (DRG) to measure local inflammation and nerve injury. After intraplantar CFA injection, hyperalgesia to heat was attenuated in 5-HTT-/-mice compared to wild type mice. Their 5-HT levels in nervous and adrenal tissue were reduced. An intraplantar injection of 5-HT four days after CFA transiently brought withdrawal latencies of 5-HTT-/-mice down to the level of wild type mice, thus rescuing the phenotype and supporting the role of 5-HT in the development of CFA-induced thermal hyperalgesia. The density of intraepidermal nerve fibres in plantar skin after CFA injection was reduced to a higher degree in 5-HTT-/-mice than in wild type mice, suggesting greater peripheral nerve injury in the knock-out mice during hind paw inflammation. Accordingly, a higher number of injured DRG neurons was identified by activating transcription factor 3 (ATF3) staining in 5-HTT-/-mice after CFA. We conclude that the phenotype of 5-HTT-/-mice leads to reduced inflammatory pain due to reduced tissue 5-HT levels and to greater peripheral nerve injury after inflammation. Human variants of the 5-HTT genotypes might be part of the factors determining the extent of nerve injury and hyperalgesia in inflammation.
BackgroundThe role of serotonin (5-hydroxytrptamine, 5-HT) in the modulation of pain has been widely studied. Previous work led to the hypothesis that 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, might by itself influence pain thresholds.ResultsIn the present study, we investigated the role of 5-HIAA in inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) into the hind paw of mice. Wild-type mice were compared to mice deficient of the 5-HT transporter (5-HTT-/- mice) using behavioral tests for hyperalgesia and high-performance liquid chromatography (HPLC) to determine tissue levels of 5-HIAA. Wild-type mice reproducibly developed thermal hyperalgesia and paw edema for 5 days after CFA injection. 5-HTT-/- mice treated with CFA had reduced thermal hyperalgesia on day 1 after CFA injection and normal responses to heat thereafter. The 5-HIAA levels in spinal cord and sciatic nerve as measured with HPLC were lower in 5-HTT-/- mice than in wild-type mice after CFA injection. Pretreatment of wild-type mice with intraperitoneal injection of para-chlorophenylalanine (p-CPA), a serotonin synthesis inhibitor, resulted in depletion of the 5-HIAA content in spinal cord and sciatic nerve and decrease in thermal hyperalgesia in CFA injected mice. The application of exogenous 5-HIAA resulted in potentiation of thermal hyperalgesia induced by CFA in 5-HTT-/- mice and in wild-type mice pretreated with p-CPA, but not in wild-type mice without p-CPA pretreatment. Further, methysergide, a broad-spectrum serotonin receptor antagonist, had no effect on 5-HIAA-induced potentiation of thermal hyperalgesia in CFA-treated wild-type mice.ConclusionTaken together, the present results suggest that 5-HIAA plays an important role in modulating peripheral thermal hyperalgesia in CFA induced inflammation, probably via a non-serotonin receptor mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.