TThe topic of this thesis is functional calculus in connection with abstract multiplier theorems. In 1960, Hörmander showed how the uniform boundedness of certain integral means of a function m in L ∞ (R^d) and its weak derivatives imply that m yields a bounded Lp -Fourier multiplier. Nowadays, this is known as the Hörmander multiplier theorem, sometimes Hörmander--Mikhlin multiplier theorem. A noteworthy detail is that a radial function m(|x|) satisfies Hörmander's condition if and only if m (|x|²) does. Hence, Hörmander's theorem is also a result on the functional calculus of the negative Laplacian -Δ. Hörmander's result has inspired a lot of research, and authors have also proven similar results for other operators such as certain Schrödinger operators, Sublaplacians on Lie groups, and later certain differential operators on spaces of homogeneous type. For us, the work of Kriegler and Weis is of particular interest. Starting with the PhD thesis of Kriegler in 2009, they showed how abstract multiplier theorems can be proven in a more general context. Namely, considering a certain class of 0-sectorial and 0-strip type operators on a general Banach space, one can construct an abstract Hörmander functional calculus based on the classical holomorphic calculus. Then, by using probalistic techniques from Banach space geometry involving so-called R-boundedness one can derive multiplier results in this generalized setting. In 2001, García-Cuerva, Mauceri, Meda, Sjögren, and Torrea proved an abstract multiplier theorem for generators of symmetric contraction semigroups, where a bounded Hörmander calculus is inferred from growth conditions on the imaginary powers of the generator. As the considered operators need not be 0-sectorial, this result is not covered by the methods of Kriegler and Weis. However, the result is based on Meda's earlier work, where he derived a bounded Hörmander if the given imaginary powers only grow polynomially fast. In this case, the operator is 0-sectorial, and Kriegler and Weis were able to recover the result while improving the order of the calculus. In this thesis, we introduce a generalized class of Hörmander functions defined on strips and sectors. Based on this and the classical holomorphic calculus, we construct a holomorphic Hörmander calculus for a class of operators which may also have strip type or angle of sectoriality greater than zero. The main result is a generalization of the multiplier theorem of García-Cuerva et al. to Banach spaces of finite cotype and Banach spaces with Pisier's property (α), where we retain and even improve the order given by Kriegler and Weis for the 0-sectorial case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.