We study the temperature-dependent evolution of the octahedral tilt order in a lead-free relaxor ferroelectric and its impact on the ferroelectric properties. Using diffuse neutron scattering on a 0.964Na 1/2 Bi 1/2 TiO 3-0.036BaTiO 3 single crystal, we suggest a model for the temperature-dependent nanostructure of this perovskite that features chemically pinned tetragonal platelets embedded in the rhombohedral matrix, often separated by a cubic intermediate phase. Our results show a clear correlation between the squared thickness of the tetragonal platelets and the dielectric permittivity. This is interpreted as a sign for increased polarizability of the strained and distorted lattice at the center of the tetragonal platelets.
The local dynamics of the lead-free relaxor 0.964Na 1/2 Bi 1/2 TiO 3 − 0.036BaTiO 3 (NBT-3.6BT) have been investigated by a combination of quasielastic neutron scattering (QENS) and ab initio molecular dynamics simulations. In a previous paper, we were able to show that the tetragonal platelets in the microstructure are crucial for understanding the dielectric properties of NBT-3.6BT [F. Pforr et al., Phys. Rev. B 94, 014105 (2016)]. To investigate their dynamics, ab initio molecular dynamics simulations were carried out using Na 1/2 Bi 1/2 TiO 3 with 001 cation order as a simple model system for the tetragonal platelets in NBT-3.6BT. Similarly, 111-ordered Na 1/2 Bi 1/2 TiO 3 was used as a model for the rhombohedral matrix. The measured single crystal QENS spectra could be reproduced by a linear combination of calculated spectra. We find that the relaxational dynamics of NBT-3.6BT are concentrated in the tetragonal platelets. Chaotic stages, during which the local tilt order changes incessantly on the timescale of several picoseconds, cause the most significant contribution to the quasielastic intensity. They can be regarded as an excited state of tetragonal platelets, whose relaxation back into a quasistable state might explain the frequency dependence of the dielectric properties of NBT-3.6BT in the 100 GHz to THz range. This substantiates the assumption that the relaxor properties of NBT-3.6BT originate from the tetragonal platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.