Abstract:In order to achieve true content-based information retrieval on video we should analyse and index video with high-level semantic concepts in addition to using user-generated tags and structured metadata like title, date, etc. However the range of such high-level semantic concepts, detected either manually or automatically, is usually limited compared to the richness of information content in video and the potential vocabulary of available concepts for indexing. Even though there is work to improve the performance of individual concept classifiers, we should strive to make the best use of whatever partial sets of semantic concept occurrences are available to us. We describe in this paper our method for using association rule mining to automatically enrich the representation of video content through a set of semantic concepts based on concept co-occurrence patterns. We describe our experiments on the TRECVid 2005 video corpus annotated with the 449 concepts of the LSCOM ontology. The evaluation of our results shows the usefulness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.