Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.
The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity.
Soft-tissue cells are surprisingly sensitive to the elasticity of their microenvironment, suggesting that traditional culture plastic and glass are less relevant to tissue regeneration and chemotherapeutics than might be achieved. Cells grown on gels that mimic the elasticity of tissue reveal a significant influence of matrix elasticity on adhesion, cytoskeletal organization, and even the differentiation of human adult derived stem cells. Cellular forces and feedback are keys to how cells feel their mechanical microenvironment, but detailed molecular mechanisms are still being elucidated. This review summarizes our initial findings for multipotent stem cells and also the elasticity-coupled effects of drugs on cancer cells and smooth muscle cells. The drugs include the contractility inhibitor blebbistatin, the proliferation inhibitor mitomycin C, an apoptotis-inducing antibody against CD47, and the translation inhibitor cycloheximide. The differential effects not only lend insight into mechano-sensing of the substrate by cells, but also have important implications for regeneration and molecular therapies.
The swelling behavior of layer-by-layer assemblies of poly(styrenesulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) with various number of layers were investigated. The data presented in this paper suggest that swelling and deswelling are completely reversible and reproducible. At 99% relative humidity, a pronounced “odd−even effect” in the swollen thickness is observed depending on the type of polyelectrolyte in the outermost layer. Contact angle measurements confirmed that the PSS surface is more hydrophilic than the PAH surface. The “odd−even effect” indicates that water has to be pressed out of the multilayer when PAH is adsorbed onto the PSS surface of the multilayer and that again more water penetrates into the multilayer on adsorption of the next PSS layer. It was also found that the relative amount of swelling with respect to the total film thickness decreases with increasing number of layers. This is an indication that the loosely packed outer layers are more sensitive to environmental humidity and consequently swell in a significantly more pronounced way than the inner ones closer to the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.