The precise simulation of particle transport through detectors remains a key element for the successful interpretation of high energy physics results. However, Monte Carlo based simulation is extremely demanding in terms of computing resources. This challenge motivates investigations of faster, alternative approaches for replacing the standard Monte Carlo technique.
We apply Generative Adversarial Networks (GANs), a deep learning technique, to replace the calorimeter detector simulations and speeding up the simulation time by orders of magnitude. We follow a previous approach which used three-dimensional convolutional neural networks and develop new two-dimensional convolutional networks to solve the same 3D image generation problem faster. Additionally, we increased the number of parameters and the neural networks representational power, obtaining a higher accuracy. We compare our best convolutional 2D neural network architecture and evaluate it versus the previous 3D architecture and Geant4 data. Our results demonstrate a high physics accuracy and further consolidate the use of GANs for fast detector simulations.
Current noisy intermediate-scale quantum devices suffer from various sources of intrinsic quantum noise. Overcoming the effects of noise is a major challenge, for which different error mitigation and error correction techniques have been proposed. In this paper, we conduct a first study of the performance of quantum Generative Adversarial Networks (qGANs) in the presence of different types of quantum noise, focusing on a simplified use case in high-energy physics. In particular, we explore the effects of readout and two-qubit gate errors on the qGAN training process. Simulating a noisy quantum device classically with IBM's Qiskit framework, we examine the threshold of error rates up to which a reliable training is possible. In addition, we investigate the importance of various hyperparameters for the training process in the presence of different error rates, and we explore the impact of readout error mitigation on the results.
In particle physics the simulation of particle transport through detectors requires an enormous amount of computational resources, utilizing more than 50% of the resources of the CERN Worldwide Large Hadron Collider Grid. This challenge has motivated the investigation of different, faster approaches for replacing the standard Monte Carlo simulations. Deep Learning Generative Adversarial Networks are among the most promising alternatives. Previous studies showed that they achieve the necessary level of accuracy while decreasing the simulation time by orders of magnitudes. In this paper we present a newly developed neural network architecture which reproduces a three-dimensional problem employing 2D convolutional layers and we compare its performance with an earlier architecture consisting of 3D convolutional layers. The performance evaluation relies on direct comparison to Monte Carlo simulations, in terms of different physics quantities usually employed to quantify the detector response. We prove that our new neural network architecture reaches a higher level of accuracy with respect to the 3D convolutional GAN while reducing the necessary computational resources. Calorimeters are among the most expensive detectors in terms of simulation time. Therefore we focus our study on an electromagnetic calorimeter prototype with a regular highly granular geometry, as an example of future calorimeters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.