Finding good global importance sampling strategies for Monte Carlo light transport is challenging. While estimators using local methods (such as BSDF sampling or next event estimation) often work well in the majority of a scene, small regions in path space can be sampled insufficiently (e.g. a reflected caustic). We propose a novel data-driven guided sampling method which selectively adapts to such problematic regions and complements the unguided estimator. It is based on complete transport paths, i.e. is able to resolve the correlation due to BSDFs and free flight distances in participating media. It is conceptually simple and places anisotropic truncated Gaussian distributions around guide paths to reconstruct a continuous probability density function (guided PDF). Guide paths are iteratively sampled from the guided as well as the unguided PDF and only recorded if they cause high variance in the current estimator. While plain Monte Carlo samples paths independently and Markov chain-based methods perturb a single current sample, we determine the reconstruction kernels by a set of neighbouring paths. This enables local exploration of the integrand without detailed balance constraints or the need for analytic derivatives. We show that our method can decompose the path space into a region that is well sampled by the unguided estimator and one that is handled by the new guided sampler. In realistic scenarios, we show 4× speedups over the unguided sampler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.