Abstract. The deep chlorophyll maximum (DCM) is a well-known feature of the global ocean.
However, its description and the study of its formation are a challenge, especially in the peculiar environment that is the Black Sea.
The retrieval of chlorophyll a (chl a) from fluorescence (Fluo) profiles recorded by Biogeochemical Argo (BGC-Argo) floats is not trivial in the Black Sea, due to the very high content of coloured dissolved organic matter (CDOM) which contributes to the fluorescence signal and produces an apparent increase in the chl a concentration with depth.
Here, we revised Fluo correction protocols for the Black Sea context using co-located in situ high-performance liquid chromatography (HPLC) and BGC-Argo measurements.
The processed set of chl a data (2014–2019) is then used to provide a systematic description of the seasonal DCM dynamics in the Black Sea and to explore different hypotheses concerning the mechanisms underlying its development.
Our results show that the corrections applied to the chl a profiles are consistent with HPLC data.
In the Black Sea, the DCM begins to form in March, throughout the basin, at a density level set by the previous winter mixed layer. During a first phase (April–May), the DCM remains attached to this particular layer.
The spatial homogeneity of this feature suggests a hysteresis mechanism, i.e. that the DCM structure locally influences environmental conditions rather than adapting instantaneously to external factors. In a second phase (July–September), the DCM migrates upward, where there is higher irradiance, which suggests the interplay of biotic factors.
Overall, the DCM concentrates around 45 % to 65 % of the total chlorophyll content within a 10 m layer centred around a depth of 30 to 40 m, which stresses the importance of considering DCM dynamics when evaluating phytoplankton productivity at basin scale.
Abstract. The Deep Chlorophyll Maximum (DCM) is a well known feature of the global ocean. However, its description and the study of its formation are a challenge, especially in the peculiar Black Sea environment. The retrieval of Chlorophyll a (Chla) from fluorescence (Fluo) profiles recorded by Biogeochemical-Argo (BGC-Argo) floats is not trivial in the Black Sea, due to the very high content of Colored Dissolved Organic Matter (CDOM) which contributes to the fluorescence signal and produces an apparent increase of the Chla concentration with depth. Here we revised Fluo correction protocols for the Black Sea context using co-located in-situ High-Performance Liquid Chromatography (HPLC) and BGC-Argo measurements. The processed set of Argo Chla data (2014–2019) is then used to provide a systematic description of the seasonal DCM dynamics in the Black Sea, and to explore different hypotheses concerning the mechanisms underlying its development. Our results show that the corrections applied to Chla profiles are consistent with HPLC data. In the Black Sea, the DCM is initiated in March, throughout the basin, at a pycnal level set by the previous winter mixed layer. The DCM then remains attached to this particular layer until the end of September. The spatial homogeneity of this feature suggests a self-sustaining DCM structure, locally influencing environmental conditions rather than adapting instantaneously to external factors. In summer, the DCM concentrates around 50 to 65 % of the total chlorophyll content around a depth of 30 m, where light conditions ranged from 0.5 to 4.5 % of surface incoming irradiance. In October, as the DCM structure is gradually eroded, a longitudinal gradient appears in the DCM pycnal depth, indicating that autumnal mixing induces a relocation of the DCM which is this time driven by regional factors, such as nutrients lateral loads and turbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.