We determine knotting probabilities and typical sizes of knots in double-stranded DNA for chains of up to half a million base pairs with computer simulations of a coarse-grained bead-stick model: Single trefoil knots and composite knots which include at least one trefoil as a prime factor are shown to be common in DNA chains exceeding 250,000 base pairs, assuming physiologically relevant salt conditions. The analysis is motivated by the emergence of DNA nanopore sequencing technology, as knots are a potential cause of erroneous nucleotide reads in nanopore sequencing devices and may severely limit read lengths in the foreseeable future. Even though our coarse-grained model is only based on experimental knotting probabilities of short DNA strands, it reproduces the correct persistence length of DNA. This indicates that knots are not only a fine gauge for structural properties, but a promising tool for the design of polymer models.
In the present article, we investigate and review the influence of chain stiffness on self-entanglements and knots in a single polymer chain with Monte Carlo simulations spanning good solvent, theta and globular phases. The last-named are of particular importance as a model system for DNA in viral capsids. Intriguingly, the dependence of knot occurrence and complexity with increasing stiffness is non-trivial, but can be understood with a few simple concepts outlined in the present article.
Abstract:Two knots on a string can either be separated or intertwined, and may even pass through each other. At the microscopic scale, such transitions may occur spontaneously, driven by thermal fluctuations, and can be associated with a topological free energy barrier. In this manuscript, we study the respective location of a trefoil (3 1 ) and a figure-eight (4 1 ) knot on a semiflexible polymer, which is parameterized to model dsDNA in physiological conditions. Two cases are considered: first, end monomers are grafted to two confining walls of varying distance. Free energy profiles and transition barriers are then compared to a subset of free chains, which contain exactly one 3 1 and one 4 1 knot. For the latter, we observe a small preference to form an intertwined state, which can be associated with an effective entropic attraction. However, the respective free energy barrier is so small that we expect transition events to occur spontaneously and frequently in polymers and DNA, which are highly knotted for sufficient strain lengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.