Activation of T cells by professional APCs that present peptide epitopes of tumor-associated Ags is critical for the induction of cell-mediated immunity against tumors. To facilitate targeted delivery of the ErbB2 (HER2, neu) tumor Ag to APCs in vivo, we have generated chimeric proteins that contain the extracellular domain of CTLA-4 for binding to B7 molecules on the APC surface, which is genetically fused to a human ErbB2 fragment as an antigenic determinant. Bacterially expressed CTLA-4-ErbB2 fusion protein and a similar molecule harboring in addition the translocation domain of Pseudomonas exotoxin A as an endosome escape function displayed specific binding to B7-expressing cells, followed by protein internalization and intracellular degradation. Vaccination of BALB/c mice with the fusion proteins resulted in the induction of ErbB2-specific CD8+ T cells and CTL-dependent protection from subsequent challenge with ErbB2-expressing but not ErbB2-negative murine renal carcinoma cells. In a therapeutic setting, injection of CTLA-4-ErbB2 protein vaccines caused rejection of established ErbB2-expressing tumors. Thereby, immunological memory was induced, leading to long-term systemic immunity and protection against rechallenge several months later. Our results demonstrate that these chimeric protein vaccines are effective tools for the induction of ErbB2-specific, T cell-mediated immunity.
Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63 -71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307 -319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam 3 CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that longlasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8 þ IFN-g þ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines.
Purpose: Presentation of tumor antigens by professional antigen-presenting cells (APC) is critical for the induction of tumor-specificT-cell responses. To facilitate targeted delivery of tumor antigens to APC, we generated DNA vaccines that encode secreted fusion proteins consisting of the extracellular domain of CTLA-4 for binding to costimulatory B7 molecules on APC, fused to residues 1 to 222 of human ErbB2 (HER-2) or a corresponding 224 residues fragment of its rat homologue Neu. Experimental Design: Induction of humoral and cellular immune responses and antitumoral activity of the DNA vaccines were tested in murine tumor models with transfected renal carcinoma cells expressing the respective antigens and in transgenic BALB-neuT mice developing spontaneous Neu-driven mammary carcinomas. Results: Vaccination of BALB/c mice with CTLA-4-ErbB2 222 plasmid DNA markedly improved tumor-free survival on challenge with ErbB2-expressing Renca cells in comparison with untargeted ErbB2 222 , accompanied by induction of stronger ErbB2-specific antibody and CTL responses. Likewise, a CTLA-4 vaccine carrying the unrelated NY-ESO-1cancer-germline antigen was more effective than untargeted NY-ESO-1 in the protection of mice from challenge with NY-ESO-1-expressing tumor cells. Importantly, antitumoral activity of such a CTLA-4 fusion vaccine could be reproduced in immunotolerant BALB-neuT mice, where a corresponding CTLA-4-Neu 224 DNA vaccine markedly delayed the onset of spontaneous Neu-driven mammary carcinomas. Conclusions: Our results show that plasmid DNA vaccines for in vivo expression of tumor antigens targeted to APC induce potent immune responses and antitumoral activities, providing a rationale for further development of this approach for specific cancer immunotherapy.
The Sleeping Beauty (SB) transposon system can mediate stable gene transfer and expression in primary human T cells. Optimal in vitro conditions for maximum gene transfer efficiencies have been developed with regard to further application of the SB transposon system in T cell based gene therapies. This raises the question of whether or not the SB transposon system is a convincing alternative for virus-mediated gene transfer based on the currently available data. Here, we will discuss controversial safety and efficacy issues in transposon and viral gene transfer technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.