Radar altimeters have been measuring ocean significant wave height for more than three decades, with their data used to record the severity of storms, the mixing of surface waters and the potential threats to offshore structures and low-lying land, and to improve operational wave forecasting. Understanding climate change and long-term planning for enhanced storm and flooding hazards are imposing more stringent requirements on the robustness, precision, and accuracy of the estimates than have hitherto been needed. Taking advantage of novel retracking algorithms, particularly developed for the coastal zone, the present work aims at establishing an objective baseline processing chain for wave height retrieval that can be adapted to all satellite missions. In order to determine the best performing retracking algorithm for both Low Resolution Mode and Delay-Doppler altimetry, an objective assessment is conducted in the framework of the European Space Agency Sea State Climate Change Initiative project. All algorithms process the same Level-1 input dataset covering a time-period of up to two years. As a reference for validation, an ERA5-based hindcast wave model as well as an in-situ buoy dataset from the Copernicus Marine Environment Monitoring Service In Situ Thematic Centre database are used. Five different metrics are evaluated: percentage and types of outliers, level of measurement noise, wave spectral variability, comparison against wave models, and comparison against in-situ data. The metrics are evaluated as a function of the distance to the nearest coast and the sea state. The results of the assessment show that all novel retracking algorithms perform better in the majority of the metrics than the baseline algorithms currently used for operational generation of the products. Nevertheless, the performance of the retrackers strongly differ depending on the coastal proximity and the sea state. Some retrackers show high correlations with the wave models and in-situ data but significantly under- or overestimate large-scale spectral variability. We propose a weighting scheme to select the most suitable retrackers for the Sea State Climate Change Initiative programme.
The sea level retrievals from the latest generation of radar altimeters (the SAR altimeters) are still challenging in the coastal zone and areas covered by sea ice and require a dedicated fitting (retracking) strategy for the waveforms. In the framework of the European Space Agency’s Baltic + Sea Level (ESA Baltic SEAL) project, an empirical retracking strategy (ALES + SAR), including a dedicated sea state bias correction, has been designed to improve the sea level observations in the Baltic Sea, characterised by a jagged coastline and seasonal sea ice coverage, without compromising the quality of open ocean data. In this work, the performances of ALES + SAR are validated against in-situ data in the Baltic Sea. Moreover, variance, crossover differences and power spectral density of the open ocean data are evaluated on a global scale. The results show that ALES + SAR performances are of comparable quality to the ones obtained using physical-based retrackers, with relevant advantages in coastal and sea ice areas in terms of quality and quantity of the sea level data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.