In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.
A set of biomedically relevant iron oxide nanoparticles with systematically modified polymer surfaces was investigated regarding their interaction with the first contact partners after systemic administration such as blood cells, blood proteins, and the endothelial blood vessels, to establish structure-activity relationships. All nanoparticles were intensively characterized regarding their physicochemical parameters. Cyto- and hemocompatibility tests showed that (1) the properties of the core material itself were not relevant in short-term incubation studies, and (2) toxicities increased with higher polymer mass, neutral = anionic < cationic surface charge and charge density, as well as agglomeration. Based on this, it was possible to classify the nanoparticles in three groups, to establish structure-activity relationships and to predict nanosafety. While the results between cyto- and hemotoxicity tests correlated well for the polymers, data were not fully transferable for the nanoparticles, especially in case of cationic low molar mass polymer coatings. To evaluate the prediction efficacy of the static in vitro models, the results were compared to those obtained in an ex ovo shell-less hen's egg test after microinjection under dynamic flow conditions. While the polymers demonstrated hemotoxicity profiles comparable to the in vitro tests, the size-dependent risks of nanoparticles could be more efficiently simulated in the more complex ex ovo environment, making the shell-less egg model an efficient alternative to animal studies according to the 3R concept.
Nonviral vector technology is attracting increasing importance in the biomedical community owing to unique advantages and prospects for the treatment of severe diseases by gene therapy. In this review, synthetic vectors that allow the controlled design of efficient and biocompatible carriers are highlighted. The current benefits, potentials, problems and unmet needs of synthetic gene delivery systems, as well as the strategies to overcome the obstacles are also discussed. Common design principles and structure-activity trends have been established that are important for stable and targeted transport to regions of interest in the body, efficient uptake into cells as well as controlled release of drugs inside the cells, for example, in specialized compartments. The status quo of the use of these systems in preclinical and clinical trials is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.