Acting in accord with long-term goals requires control of interfering impulses, the success of which depends on several different processes. Using a structural-equation modeling approach, we investigated 5 behavioral components of impulsivity: the control of stimulus interference, proactive interference, and response interference, as well as decisional and motivational impulsivity. Results support the existence of 5 correlated but separable components of impulsive behavior. The present study is the 1st to demonstrate the separability of stimulus and response interference. It also supports the notion that control of response-related interference is not a unitary construct: Response-selection demands were separable from those of withholding or stopping. Relations between behavioral impulsivity components and self-report measures of impulsivity were largely absent. We conclude that as the construct of impulsivity has been extended to describe an increasingly diverse set of phenomena and processes, it has become too broad to be helpful in guiding future research.
The authors present a diffusion-model analysis of the Implicit Association Test (IAT). In Study 1, the IAT effect was decomposed into 3 dissociable components: Relative to the compatible phase, (a) ease and speed of information accumulation are lowered in the incompatible phase, (b) more cautious speed-accuracy settings are adopted, and (c) nondecision components of processing require more time. Studies 2 and 3 assessed the nature of interindividual differences in these components. Construct-specific variance in the IAT relating to the construct to be measured (such as implicit attitudes) was concentrated in the compatibility effect on information accumulation (Studies 2 and 3), whereas systematic method variance in the IAT was mapped on differential speed-accuracy settings (Study 3). Implications of these dissociations for process theories of the IAT and for applications are discussed.
Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.
In four experiments, task-switching processes were investigated with variants of the alternating runs paradigm and the explicit cueing paradigm. The classical diffusion model for binary decisions (Ratcliff, 1978) was used to dissociate different components of task-switching costs. Findings can be reconciled with the view that task-switching processes take place in successive phases as postulated by multiple-components models of task switching (e.g., Mayr & Kliegl, 2003; Ruthruff, Remington, & Johnston, 2001). At an earlier phase, task-set reconfiguration (Rogers & Monsell, 1995) or cue-encoding (Schneider & Logan, 2005) takes place, at a later phase, the response is selected in accord with constraints set in the first phase. Inertia effects (Allport, Styles, & Hsieh, 1994; Allport & Wylie, 2000) were shown to affect this later stage. Additionally, findings support the notion that response caution contributes to both global as well as to local switching costs when task switches are predictable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.