Our data characterize SW1353 cells as a cell line with only a very limited potential to mimic PHCs, though SW1353 cells can be of value to study the induction of protease expression within cells, a phenomenon also seen in chondrocytes.
BackgroundTreatment of non-small cell lung cancer with novel targeted therapies is a major unmet clinical need. Alternative splicing is a mechanism which generates diverse protein products and is of functional relevance in cancer.ResultsIn this study, a genome-wide analysis of the alteration of splicing patterns between lung cancer and normal lung tissue was performed. We generated an exon array data set derived from matched pairs of lung cancer and normal lung tissue including both the adenocarcinoma and the squamous cell carcinoma subtypes. An enhanced workflow was developed to reliably detect differential splicing in an exon array data set. In total, 330 genes were found to be differentially spliced in non-small cell lung cancer compared to normal lung tissue. Microarray findings were validated with independent laboratory methods for CLSTN1, FN1, KIAA1217, MYO18A, NCOR2, NUMB, SLK, SYNE2, TPM1, (in total, 10 events) and ADD3, which was analysed in depth. We achieved a high validation rate of 69%. Evidence was found that the activity of FOX2, the splicing factor shown to cause cancer-specific splicing patterns in breast and ovarian cancer, is not altered at the transcript level in several cancer types including lung cancer.ConclusionsThis study demonstrates how alternatively spliced genes can reliably be identified in a cancer data set. Our findings underline that key processes of cancer progression in NSCLC are affected by alternative splicing, which can be exploited in the search for novel targeted therapies.
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries and overall 5-year survival rates of less than 5%. The most frequent mutations in PDAC are gain-of-function mutations in KRAS as well as loss-of-function mutations in p53. Both mutations have severe impacts on the metabolism of tumor cells. Many of these metabolic changes are mediated by transporters or channels that regulate the exchange of metabolites and ions between the intracellular compartment and the tumor microenvironment. In the study presented here, our goal was to identify novel transporters or channels that regulate oxidative phosphorylation (OxPhos) in PDAC in order to characterize novel potential drug targets for the treatment of these cancers. We set up a Seahorse Analyzer XF based siRNA screen and identified previously described as well as novel regulators of OxPhos. The siRNA that resulted in the greatest change in cellular oxygen consumption was targeting the KCNN4 gene, which encodes for the Ca2+-sensitive K+ channel KCa3.1. This channel has not previously been reported to regulate OxPhos. Knock-down experiments as well as the use of a small molecule inhibitor confirmed its role in regulating oxygen consumption, ATP production and cellular proliferation. Furthermore, PDAC cell lines sensitive to KCa3.1 inhibition were shown to express the channel protein in the plasma membrane as well as in the mitochondria. These differences in the localization of KCa3.1 channels as well as differences in the regulation of cellular metabolism might offer opportunities for targeted therapy in subsets of PDAC.
Biological networks, such as protein interaction, regulatory or metabolic networks, derived from public databases, biological experiments or text mining can be useful for the analysis of high-throughput experimental data. We present two algorithms embedded in the ToPNet application that show promising performance in analyzing expression data in the context of such networks. First, the Significant Area Search algorithm detects subnetworks consisting of significantly regulated genes. These subnetworks often provide hints on which biological processes are affected in the measured conditions. Second, Pathway Queries allow detection of networks including molecules that are not necessarily significantly regulated, such as transcription factors or signaling proteins. Moreover, using these queries, the user can formulate biological hypotheses and check their validity with respect to experimental data. All resulting networks and pathways can be explored further using the interactive analysis tools provided by ToPNet program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.