We describe the associative multilinear polynomial functions over commutative integral domains. This extends Marichal and Mathonet's result on infinite integral domains and provides a new proof of Andres's classification of two-element n-semigroups.
We find an orientation of a tree with 20 vertices such that the corresponding fixed-template constraint satisfaction problem (CSP) is NP-complete, and prove that for every orientation of a tree with fewer vertices the corresponding CSP can be solved in polynomial time. We also compute the smallest tree that is NL-hard (assuming L≠NL), the smallest tree that cannot be solved by arc consistency, and the smallest tree that cannot be solved by Datalog. Our experimental results also support a conjecture of Bulín concerning a question of Hell, Nešetřil and Zhu, namely that ‘easy trees lack the ability to count’. Most proofs are computer-based and make use of the most recent universal-algebraic theory about the complexity of finite-domain CSPs. However, further ideas are required because of the huge number of orientations of trees. In particular, we use the well-known fact that it suffices to study orientations of trees that are cores and show how to efficiently decide whether a given orientation of a tree is a core using the arc-consistency procedure. Moreover, we present a method to generate orientations of trees that are cores that works well in practice. In this way we found interesting examples for the open research problem to classify finite-domain CSPs in NL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.