The ability to spatially modulate the electronic properties of solids has led to landmark discoveries in condensed matter physics as well as new electronic applications. Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches to spatially modulating their properties exist. Here we demonstrate spatial control over the superconducting state in mesoscale samples of the canonical heavy-fermion superconductor CeIrIn5. We use a focused ion beam (FIB) to pattern crystals on the microscale, which tailors the strain induced by differential thermal contraction into specific areas of the device. The resulting non-uniform strain fields induce complex patterns of superconductivity due to the strong dependence of the transition temperature on the strength and direction of strain. Electrical transport and magnetic imaging of devices with different geometry show that the obtained spatial modulation of superconductivity agrees with predictions based on finite element simulations. These results present a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter.Heavy fermion materials exhibit a rich competition between metallic, superconducting, and magnetically ordered ground states. The ability to locally control electronic properties within these materials would enable the design of new correlated states both for fundamental research and for applications. Alternative approaches to achieve spatially modulated correlations involve modulating the
We measure the full elastic tensors of Mn3Ge and Mn3Sn as a function of temperature through their respective antiferromagnetic phase transitions. Large discontinuities in the bulk moduli at the Néel transitions indicate strong magnetoelastic coupling in both compounds. Strikingly, the discontinuities are nearly a factor of 10 larger in Mn3Ge than in Mn3Sn. We use the magnitudes of the discontinuities to calculate the pressure derivatives of the Néel temperature, which are 39 K/GPa 14.3 K/GPa for Mn3Ge and Mn3Sn, respectively. We measured the in-plane shear modulus c66, which couples strongly to the magnetic order, in magnetic fields up to 18 T and found quantitatively similar behavior in both compounds. Recent measurements have demonstrated strong piezomagnetism in Mn3Sn: our results suggest that Mn3Ge may be an even better candidate for this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.