Color Doppler by transthoracic echocardiography creates two-dimensional fan-shaped maps of blood velocities in the cardiac cavities. It is a one-component velocimetric technique since it only returns the velocity components parallel to the ultrasound beams. Intraventricular vector flow mapping (iVFM) is a method to recover the blood velocity vectors from the Doppler scalar fields in an echocardiographic three-chamber view. We improved our iVFM numerical scheme by imposing physical constraints. The iVFM consisted in minimizing regularized Doppler residuals subject to the condition that two fluid-dynamics constraints were satisfied, namely planar mass conservation, and free-slip boundary conditions. The optimization problem was solved by using the Lagrange multiplier method. A finite-difference discretization of the optimization problem, written in the polar coordinate system centered on the cardiac ultrasound probe, led to a sparse linear system. The single regularization parameter was determined automatically for non-supervision considerations. The physics-constrained method was validated using realistic intracardiac flow data from a patient-specific CFD (computational fluid dynamics) model. The numerical evaluations showed that the iVFM-derived velocity vectors were in very good agreement with the CFD-based original velocities, with relative errors ranged between 0.3 and 12%. We calculated two macroscopic measures of flow in the cardiac region of interest, the mean vorticity and mean stream function, and observed an excellent concordance between physics-constrained iVFM and CFD. The capability of physics-constrained iVFM was finally tested with in vivo color Doppler data acquired in patients routinely examined in the echocardiographic laboratory. The vortex that forms during the rapid filling was deciphered. The physics-constrained iVFM algorithm is ready for pilot clinical studies and is expected to have a significant clinical impact on the assessment of diastolic function.
Color Doppler imaging is the modality of choice for simultaneous visualization of myocardium and intracavitary flow over a wide scan area. This visualization modality is subject to several sources of error, the main ones being aliasing and clutter. Mitigation of these artifacts is a major concern for better analysis of intracardiac flow. One option to address these issues is through simulations. In this paper, we present a numerical framework for generating clinical-like color Doppler imaging. Synthetic blood vector fields were obtained from a patientspecific computational fluid dynamics CFD model. Realistic texture and clutter artifacts were simulated from real clinical ultrasound cineloops. We simulated several scenarios highlighting the effects of i) flow acceleration, ii) wall clutter, and iii) transmit wavefronts, on Doppler velocities. As a comparison, an "ideal" color Doppler was also simulated, without these harmful effects. This synthetic dataset is made publicly available and can be used to evaluate the quality of Doppler estimation techniques. Besides, this approach can be seen as a first step towards the generation of comprehensive datasets for training neural networks to improve the quality of Doppler imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.