Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on CalabiYau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.
The Swampland Distance Conjecture claims that effective theories derived from a consistent theory of quantum gravity only have a finite range of validity. This will imply drastic consequences for string theory model building. The refined version of this conjecture says that this range is of the order of the naturally built in scale, namely the Planck scale. It is investigated whether the Refined Swampland Distance Conjecture is consistent with proper field distances arising in the well understood moduli spaces of Calabi-Yau compactification. Investigating in particular the non-geometric phases of Kähler moduli spaces of dimension h 11 ∈ {1, 2, 101}, we always find proper field distances that are smaller than the Planck-length.
Abstract:We continue the investigation of F-term axion monodromy inflation in string theory, while seriously taking the issue of moduli stabilization into account. For a number of closed and open string models, we show that they suffer from serious control issues once one is trying to realize trans-Planckian field excursions. More precisely, the flux tuning required to delay the logarithmic scaling of the field distance to a trans-Planckian value cannot be done without leaving the regime where the employed effective supergravity theory is under control. Our findings are consistent with the axionic extension of the Refined Swampland Conjecture, stating that in quantum gravity the effective theory breaks down for a field excursion beyond the Planck scale. Our analysis suggests that models of Fterm axion monodromy inflation with a tensor-to-scalar ratio r ≥ O(10 −3 ) cannot be parametrically controlled.
We study moduli stabilization for type IIB orientifolds compactified on CalabiYau threefolds in the region close to conifold singularities in the complex structure moduli space. The form of the periods implies new phenomena like exponential mass hierarchies even in the regime of negligible warping. Integrating out the heavy conic complex structure modulus leads to an effective flux induced potential for the axio-dilaton and the remaining complex structure moduli containing exponentially suppressed terms that imitate nonperturbative effects. It is shown that this scenario can be naturally combined with the large volume scenario so that all moduli are dynamically stabilized in the dilute flux regime. As an application of this moduli stabilization scheme, a string inspired model of aligned inflation is designed that features a parametrically controlled hierarchy of mass scales.
This brief article reviews a recently proposed scenario of moduli stabilization constructed in the vicinity of a conifold locus in the complex structure moduli space. We discuss typical features of moduli stabilization due to the logarithmic structure of the periods over the Calabi-Yau threefold. Integrating out heavy moduli implies exponential terms in the superpotential very reminiscent of non-perturbative contributions. Ultimately, these terms can lead to an alignment of axions potentially realizing large-field inflation. Our goal is to investigate common issues appearing for moduli stabilization near the conifold and subsequent applications to string cosmology. Even though this setup needs to be understood as a toy model, a closer look at the validity of the effective theories reveals characteristic obstacles, which are likely to occur in more serious scenarios as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.