Background and Purpose: Many psychotherapeutic drugs, including clozapine, display polypharmacology and act on GABA A receptors. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal α5 subunitcontaining GABA A receptors. The purpose of this study is to investigate the effects of tricyclic compounds on α5 subunit-containing receptor subtypes.Experimental Approach: Functional studies of effects by seven antipsychotic and antidepressant medications were performed in several GABA A receptor subtypes by two-electrode voltage-clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the α5 subunit, probing a novel binding site. Radioligand displacement data complemented the functional and mutational findings.
Background and Purpose: Many psychotherapeutic drugs including clozapine have a polypharmacological profile and act on GABA receptors, where subtype-specific information is often lacking. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal α5 subunit containing GABA receptors. Experimental Approach: Functional studies of GABA modulatory effects by antipsychotic and antidepressant medications were performed in several GABA receptor subtypes by two‐electrode voltage‐clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the α5 subunit, probing a novel binding site. Computational ligand analysis complemented the functional and mutational data. Key Results: We show that the antipsychotic drugs clozapine and chlorpromazine have negative modulatory effects on multiple GABA receptor subtypes, including α5-containing. On the latter we show negative modulatory effects for five additional antipsychotic and antidepressant drugs. Based on a chlorpromazine binding site observed in a GABA-gated bacterial homologue, we identified a novel site in α5 GABA receptor subunits. Conclusion and Implications: Our findings support previous studies suggesting a link between some of the therapeutic effects of clozapine and its negative modulatory action on certain GABA receptor subtypes. The novel site we describe in this study is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology.
Background and Purpose: Many psychotherapeutic drugs, including clozapine, display polypharmacology and act on GABA receptors. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal a5 subunit-containing GABA receptors. The purpose of this study is to investigate tricyclic compounds in a5 subunit-containing receptor subtypes. Experimental Approach: Functional studies of effects by seven antipsychotic and antidepressant medications were performed in several GABA receptor subtypes by two‐electrode voltage‐clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the a5 subunit, probing a novel binding site. Radioligand displacement data complemented the functional and mutational findings. Key Results: We show that the antipsychotic drugs clozapine and chlorpromazine exert functional inhibition on multiple GABA receptor subtypes, including a5-containing ones. Based on a chlorpromazine binding site observed in a GABA-gated bacterial homologue, we identified a novel site in a5 GABA receptor subunits and demonstrate differential usage of this and the orthosteric sites by these ligands. Conclusion and Implications: Despite high molecular and functional similarities among the tested ligands, they reduce GABA currents by differential usage of allosteric and orthosteric sites. The CPZ site we describe here is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology. Further studies in defined subtypes are needed to substantiate mechanistic links between the therapeutic effects of clozapine and its action on certain GABA receptor subtypes.
Background and Purpose: Many psychotherapeutic drugs, including clozapine, display polypharmacology and act on GABA receptors. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal a5 subunit-containing GABA receptors. The purpose of this study is to investigate tricyclic compounds in a5 subunit-containing receptor subtypes. Experimental Approach: Functional studies of effects by seven antipsychotic and antidepressant medications were performed in several GABA receptor subtypes by two‐electrode voltage‐clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the a5 subunit, probing a novel binding site. Radioligand displacement data complemented the functional and mutational findings. Key Results: We show that the antipsychotic drugs clozapine and chlorpromazine exert functional inhibition on multiple GABA receptor subtypes, including a5-containing ones. Based on a chlorpromazine binding site observed in a GABA-gated bacterial homologue, we identified a novel site in a5 GABA receptor subunits and demonstrate differential usage of this and the orthosteric sites by these ligands. Conclusion and Implications: Despite high molecular and functional similarities among the tested ligands, they reduce GABA currents by differential usage of allosteric and orthosteric sites. The C C C C C C site we describe here is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology. Further studies in defined subtypes are needed to substantiate mechanistic links between the therapeutic effects of clozapine and its action on certain GABA receptor subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.