In females, X chromosome inactivation (XCI) begins with the expression of the XIST gene from the X chromosome destined to be inactivated (Xi) and the coating of XIST RNA in cis. It has recently been reported that this process is supported by the product of the BRCA1 tumor suppressor gene and that BRCA1 À/À À À / À À cancers show Xi chromatin structure defects, thus suggesting a role of XCI perturbation in BRCA1-mediated tumorigenesis. Using a combined genetic and epigenetic approach, we verified the occurrence of XCI in BRCA1À and BRCA1 wt breast cancer cell lines. It was ascertained that the Xi was lost in all cancer cell lines, irrespective of the BRCA1 status and that more than one active X (Xa) was present. In addition, no epigenetic silencing of genes normally subjected to XCI was observed. We also evaluated XIST expression and found that XIST may be occasionally transcribed also from Xa. Moreover, in one of the BRCA1 wt cell line the restoring of XIST expression using a histone deacetylase inhibitor, did not lead to XCI. To verify these findings in primary tumors, chromosome X behavior was investigated in a few BRCA1-associated and BRCA1-not associated primary noncultured breast carcinomas and the results mirrored those obtained in cancer cell lines. Our findings indicate that the lack of XCI may be a frequent phenomenon in breast tumorigenesis, which occurs independently of BRCA1 status and XIST expression and is due to the loss of Xi and replication of Xa and not to the reactivation of the native Xi. (Cancer Res 2005; 65(6): 2139-46)
During active surveillance at the Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT, Palermo, Italy) with the CARBA screening medium, five pairs of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae and Escherichia coli strains were isolated in each of five colonized patients. In each patient, lateral gene transfer was demonstrated by comparing K. pneumoniae and E. coli strains, both possessing KPC-3, Tn4401a and pKpQIL-IT elements. The isolates were found to be multiclonal by multilocus sequence typing (sequence type (ST) 512 related to ST258, and ST307 belonging to a clonal complex different from the habitual sequence clone ST258 isolated in Italy) and pulsed-field gel electrophoresis. The results of our study highlight the easy transfer of KPC among Enterobacteriaceae colonizing the human intestine, and the active and careful surveillance required to identify and prevent the spread of these multidrug-resistant microorganisms.
The present study is the first BRCA1 disease-associated mutations analysis in Southern Italian families. The early age of onset of such tumors and the association with the HBOC familial profile could be two valid screening factors for the identification of BRCA1 mutation carriers. Finally, we identified a BRCA1 mutation with a possible founder effect.
PurposeHepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence.MethodsWe analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation.ResultsHere we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft.ConclusionsOur results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.