Threatening sporadic outbreaks of avian influenza and the H1N1 pandemic of 2009 highlight the need for rapid and accurate detection and typing of influenza viruses. In this paper, we describe the validation of the VereFlu™ Lab-on-Chip Influenza Assay, which is based on the integration of two technologies: multiplex reverse transcription (RT)-PCR followed by microarray amplicon detection. This assay simultaneously detects five influenza virus subtypes, including the 2009 pandemic influenza A (H1N1), seasonal H1N1, H3N2, H5N1 and influenza B virus. The VereFlu™ assay was clinically validated in Singapore and compared against reference methods of real-time PCR, virus detection by immunofluorescence of cell cultures and sequencing. A sensitivity and specificity of 96.8% and 92.8%, respectively, was demonstrated for pandemic H1N1; 95.7% and 100%, respectively, for seasonal H1N1; 91.2% and 97.6%, respectively, for seasonal H3N2; 95.2% and 100%, respectively, for influenza B. Additional evaluations carried out at the World Health Organization (WHO) Collaborating Centre, Melbourne, Australia, confirmed that the test was able to reliably detect H5N1. This portable, fast time-to-answer (3 hours) device is particularly suited for diagnostic applications of detection, differentiation and identification of human influenza virus subtypes.
The overall results show that the present platform is very promising for rapid identification of DNA sequence variations in an integrated, cost effective and convenient silicon chip format.
The KRAS oncogene is involved in the pathogenesis of several types of cancer, particularly colorectal cancer (CRC). The most frequent mutations in this gene are associated with poor survival, increased tumor aggressiveness and resistance to therapy with anti-epidermal growth factor receptor (EGFR) antibodies. For this reason, KRAS mutation testing has become increasingly common in clinical practice for personalized cancer treatments of CRC patients. Detection methods for KRAS mutations are currently expensive, laborious, time-consuming and often lack of diagnostic sensitivity and specificity. In this study, we describe the development of a Lab-on-Chip assay for genotyping of KRAS mutational status. This assay, based on the In-Check platform, integrates microfluidic handling, a multiplex polymerase chain reaction (PCR) and a low-density microarray. This integrated sample-to-result system enables the detection of KRAS point mutations, including those occurring in codons 12 and 13 of exon 2, 59 and 61 of exon 3, 117 and 146 of exon 4. Thanks to its miniaturization, automation, rapid analysis, minimal risk of sample contamination, increased accuracy and reproducibility of results, this Lab-on-Chip platform may offer immediate opportunities to simplify KRAS genotyping into clinical routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.