The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained.
The gene encoding aspartate aminotransferase from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 was cloned, sequenced and overexpressed in Escherichia coli. The recombinant protein (PhAspAT) was characterized both at the structural and functional level in comparison with the E. coli enzyme (EcAspAT), which is the most closely related (52% sequence identity) bacterial counterpart. PhAspAT is rapidly inactivated at 50 8C (half-life 6.8 min), whereas at this temperature EcAspAT is stable for at least 3 h. The optimal temperature for PhAspAT activity is < 64 8C, which is some 11 8C below that of EcAspAT. The protein thermal stability was investigated by following changes in both tryptophan fluorescence and amide ellipticity; this clearly suggested that a first structural transition occurs at < 50 8C for PhAspAT. These results agree with the expected thermolability of a psychrophilic enzyme, although the observed stability is much higher than generally found for enzymes isolated from cold-loving organisms. Furthermore, in contrast with the higher efficiency exhibited by several extracellular psychrophilic enzymes, both k cat and k cat /K m of PhAspAT are significantly lower than those of EcAspAT over the whole temperature range. This behaviour possibly suggests that the adaptation of this class of endocellular enzymes to a cold environment may have only made them less stable and not more efficient.The affinity of PhAspAT for both amino-acid and 2-oxo-acid substrates decreases with increasing temperature. However, binding of maleate and 2-methyl-l-aspartate, which both inhibit the initial steps of catalysis, does not change over the temperature range tested. Therefore, the observed temperature effect may occur at any of the steps of the catalytic mechanism after the formation of the external aldimine.A molecular model of PhAspAT was constructed on the basis of sequence homology with other AspATs. Interestingly, it shows no insertion or extension of loops, but some cavities and a decrease in side chain packing can be observed.Keywords: aspartate aminotransferase; cold adaptation; psychrophile.The conformational stability of most globular proteins is surprisingly low, usually not exceeding 60 kJ´mol 21 [1,2], which corresponds to a few non-covalent interactions (hydrogen bonds, salt bridges and hydrophobic interactions) out of hundreds that contribute to the formation of a well-defined 3D protein structure. The biological significance of this observation may depend on the functional role of proteins: a compromise between rigidity and flexibility of the polypeptide chain is absolutely required to allow the protein to function. This compromise reflects the basic need for biological molecules to adapt to`extreme' growth conditions, as evolution seems to have forced structural changes towards optimization of structure/function relationships rather than maximum stability [2].Only recently has increased effort been devoted to understanding the molecular basis of protein adaptation to cold (reviewed in [3±...
Approaching the molecular mechanism of some enzymes is hindered by the difficulty of obtaining suitable protein-ligand complexes for structural characterization. DsbA, the major disulfide oxidase in the bacterial periplasm, is such an enzyme. Its structure has been well characterized in both its oxidized and its reduced states, but structural data about DsbA-peptide complexes are still missing. We report herein an original, straightforward, and versatile strategy for making a stable covalent complex with a cysteine-homoalanine thioether bond instead of the labile cystine disulfide bond which normally forms between the enzyme and polypeptides during the catalytic cycle of DsbA. We substituted a bromohomoalanine for the cysteine in a model 14-mer peptide derived from DsbB (PID-Br), the membrane partner of DsbA. When incubated in the presence of the enzyme, a selective nucleophilic substitution of the bromine by the thiolate of the DsbA Cys(30) occurred. The major advantage of this strategy is that it enables the direct use of the wild-type form of the enzyme, which is the most relevant to obtain unbiased information on the enzymatic mechanism. Numerous intermolecular NOEs between DsbA and PID could be observed by NMR, indicating the presence of preferential noncovalent interactions between the two partners. The thermodynamic properties of the DsbA-PID complex were measured by differential scanning calorimetry. In the complex, the values for both denaturation temperature and variation in enthalpy associated with thermal unfolding were between those of oxidized and reduced forms of DsbA. This progressive increase in stability along the DsbA catalytic pathway strongly supports the model of a thermodynamically driven mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.