Elastin peptides (EPs) generated by hydrolysis of elastic fibers by elastinolytic enzymes display a wide spectrum of biological activities. Here, we investigated their influence on rat heart ischemia-mediated injury using the Langendorff ex vivo model. EPs, i.e., kappa elastin, at 1.32- and 660-nM concentrations, when administered before the ischemia period, elicited a beneficial influence against ischemia by accelerating the recovery rate of heart contractile parameters and by decreasing significantly creatine kinase release and heart necrosis area when measured at the onset of the reperfusion. All effects were S-Gal-dependent, as being reproduced by (VGVAPG)3 and as being inhibited by receptor antagonists, such as lactose and V14 peptide (VVGSPSAQDEASPL). EPs interaction with S-Gal triggered NO release and activation of PI3-kinase/Akt and ERK1/2 in human coronary endothelial cells (HCAECs) and rat neonatal cardiomyocytes (RCs). This signaling pathway, as designated as RISK, for reperfusion injury salvage kinase pathway, was shown to be responsible for the beneficial influence of EPs on ischemia/reperfusion injury on the basis of its inhibition by specific pharmacological inhibitors. EPs survival activity was attained at a concentration averaging that present into the blood circulation, supporting the contention that these matrikines might offer a natural protection against cardiac injury in young and adult individuals. Such protective effect might be lost with aging, since we found that hearts from 24-month-old rats did not respond to EPs.
Background: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. Methods: In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. Results: Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. Conclusions: These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney.
Using an isolated non‐working rat heart model, this study investigated the mechanisms of pharmacological pre‐conditioning (PC) induced by P2Y receptor stimulation with pyridoxal‐5′‐phosphate (PLP). After 6‐hydroxydopamine pretreatment and a 15‐min stabilization period, isolated rat hearts were perfused for 25 min then subjected to 40 min of global ischemia and 30 min of reperfusion (I/R); exposed for 15 min to 0.05 μm PLP bracketed for 25 min with broad‐spectrum P2 antagonists (suramin or PPADS) or with more specific P2Y antagonists (AMPαS or MRS2578), 1 μm each, followed by a 5‐min PLP‐free perfusion before I/R; treated during 25 min with either glybenclamide (GLY, 1 μm), 5‐hydroxydecanoic acid (5‐HD, 100 μm), U73122 (0.5 μm), H89 (1 μm), or KN93 (1 μm), with an infusion starting 5 min before PLP. The main endpoints were the rate–pressure product (RPP), creatine kinase (CK) release and area necrosis. Recovery of RPP, measured 5 min after reperfusion, was rapidly improved by PLP, blocked by the P2 antagonists, and decreased with the different inhibitors. Fifteen minutes after the end of ischemia, CK release reached maximal values in all groups. PLP provided significant protection, whereas the P2 antagonists, 5‐HD, a mitochondrial selective KATP antagonist and GLY a non‐selective KATP channel blocker, suppressed the protective effect on myocardial injury. The suppression of the cardioprotective effects of PLP by AMPαS, the PKA inhibitor (H89), and phospholipase C blocker (U73122) is in agreement with the P2Y11 receptor as a receptor for PLP‐induced PC. The suppression of the cardioprotective effects of PLP by MRS2578 and U73122 is in agreement with the P2Y6 receptor as a receptor for PLP‐induced PC. Pre‐ischemic exposure to nanomolar concentrations of PLP is protective against I/R. P2Y11 and P2Y6 represents the most likely candidate receptors for PLP‐induced cardiac PC.
Background: Several studies have reported the beneficial effects of anti-platelet drugs in cardioprotection against ischaemia–reperfusion injuries. To date, no studies have focused on the indirect cytoprotective effects of ticagrelor via adenosine receptor on the endothelium. Method: By evaluating cell viability and cleaved caspase 3 expression, we validated a model of endothelial cell apoptosis induced by hypoxia. In hypoxic endothelial cells treated with ticagrelor, we quantified the extracellular concentration of adenosine, and then we studied the involvement of adenosine pathways in the cytoprotective effect of ticagrelor. Results: Our results showed that 10 µM ticagrelor induced an anti-apoptotic effect in our model associated with an increase of extracellular adenosine concentration. Similar experiments were conducted with cangrelor but did not demonstrate an anti-apoptotic effect. We also found that A2B and A3 adenosine receptors were involved in the anti-apoptotic effect of ticagrelor in endothelial cells exposed to 2 h of hypoxia stress. Conclusion: we described an endothelial cytoprotective mechanism of ticagrelor against hypoxia stress, independent of blood elements. We highlighted a mechanism triggered mainly by the increased extracellular bioavailability of adenosine, which activates A2B and A3 receptors on the endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.