Background: The current severe acute respiratory syndrome coronavirus 2 pandemic is unprecedented in its impact. It is essential to shed light on patient characteristics that predispose to a more severe disease course. Obesity, defined as a BMI>30 kg/m 2 , is suggested to be one of these characteristics. However, BMI does not differentiate between fat mass and lean body mass, or the distribution of fat tissue. The aim of the present study was to assess the body composition of COVID-19 patients admitted to the ward or the ICU and identify any associations with severity of disease. Methods: We performed an observational cross-sectional cohort study. Bioelectric impedance analysis was conducted amongst all confirmed COVID-19 patients admitted to the ward or ICU of our hospital in the Netherlands, between April 10 and 17, 2020. Body water measurements and derived values were recalculated to dry weight, using a standard ratio of extracellular water to total body water of 0.38. Data were compared between the ward and ICU patients, and regression models were used to assess the associations between baseline characteristics, body composition, and several indicators of disease severity, including a composite score composed of mortality, morbidity, and ICU admission. Results: Fifty-four patients were included, of which 30 in the ward and 24 in the ICU. The mean age was 67 years (95%-CI 64e71), and 34 (63%) were male. Mean BMI was 29.7 (95%-CI 28.2e31.1) kg/m 2 and did not differ between groups. Body composition values were not independently associated with disease severity. In multiple logistic regression analyses, a low phase angle was associated with COVID-19 severity in the composite score (OR 0.299, p ¼ 0.046). Conclusion: We found no significant associations between body composition, including fat mass, visceral fat area, and fat-free mass, and disease severity in our population of generally overweight COVID-19 patients. A lower phase angle did increase the odds of severe COVID-19. We believe that factors other than body composition play a more critical role in the development of severe COVID-19.
Background: Both overfeeding and underfeeding of intensive care unit (ICU) patients are associated with worse outcomes. A reliable estimation of the energy expenditure (EE) of ICU patients may help to avoid these phenomena. Several factors that influence EE have been studied previously. However, the effect of neuromuscular blocking agents on EE, which conceptually would lower EE, has not been extensively investigated. Methods: We studied a cohort of adult critically ill patients requiring invasive mechanical ventilation and treatment with continuous infusion of cisatracurium for at least 12 h. The study aimed to quantify the effect of cisatracurium infusion on EE (primary endpoint). EE was estimated based on ventilator-derived VCO 2 (EE in kcal/day = VCO 2 × 8.19). A subgroup analysis of septic and non-septic patients was performed. Furthermore, the effects of body temperature and sepsis on EE were evaluated. A secondary endpoint was hypercaloric feeding (> 110% of EE) after cisatracurium infusion. Results: In total, 122 patients were included. Mean EE before cisatracurium infusion was 1974 kcal/day and 1888 kcal/day after cisatracurium infusion. Multivariable analysis showed a significantly lower EE after cisatracurium infusion (MD − 132.0 kcal (95% CI − 212.0 to − 52.0; p = 0.001) in all patients. This difference was statistically significant in both sepsis and non-sepsis patients (p = 0.036 and p = 0.011). Non-sepsis patients had lower EE than sepsis patients (MD − 120.6 kcal; 95% CI − 200.5 to − 40.8, p = 0.003). Body temperature and EE were positively correlated (Spearman's rho = 0.486, p < 0.001). Hypercaloric feeding was observed in 7 patients. Conclusions: Our data suggest that continuous infusion of cisatracurium in mechanically ventilated ICU patients is associated with a significant reduction in EE, although the magnitude of the effect is small. Sepsis and higher body temperature are associated with increased EE. Cisatracurium infusion is associated with overfeeding in only a minority of patients and therefore, in most patients, no reductions in caloric prescription are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.