The knowledge of soil water retention vs. soil water matric potential is applied to study irrigation and drainage scheduling, soil water storage capacity (plant available water), solute movement, plant growth and water stress. To measure field capacity and wilting point is expensive, laborious and is time consuming, so, frequently, matemathic models, called pedo-transfer functions (PTFs) are utilized to estimate field capacity and wilting point through physical-chemical soil characteristics. Six PTFs have been evaluated (Gupta and Larson, 1979;Rawls et al., 1982;De Jong et al., 1983;Rawls and Brakensiek, 1985;Saxton et al., 1986;Vereecken et al., 1989) by comparing measured soil moisture values with estimated ones at soil water matric potential of -33 and -1500 kPa. Soil samples were collected (361)
The knowledge of soil water retention vs. soil water matric potential is used to study irrigation and drainage schedules, soil water storage capacity (plant available water), solute movement, plant growth and water stress. The hydraulic soil properties measuring is expensive, laborious and takes too long time, so, frequently, matemathic models, called pedo-transfer functions (PTFs) are utilized to estimate hydraulic soil properties through soil chimical and phisical characteristics. Six pedo-transfer functions have been evaluated (Gupta & Larson, 1979; Rawls et al., 1982; De Jong et al., 1983; Rawls & Brakensiek, 1985; Saxton et al., 1986; Vereecken et al., 1989) by comparing estimated with measured soil moisture values at soil water matric potential of –33 and –1500 kPa of 361 soil samples collected from 185 pedons of Apulia Region (South Italy), having various combinations of particle-size distribution, soil organic matter content and bulk density. Accuracy of the soil moisture predictions have been evaluated by statistic indexes such as Weighted stantard error (WSEE), Mean Deviation (MD), Root Mean Squared Deviation (RMSD) and the determination coefficient (R2) between estimated and measured water retention values. The Rawls PTF model demostrated to have the lowest values of WSEE, MD and RMSD indexes (0.044, -0.007 and 0.059 m3 H2O m-3 soil, respectively) at –33 Kpa soil water matric potential (Field Capacity), while for estimating soil moisture at the Wilting Point (-1500 kPa) Rawls & Brakensiek model is adequate (WSEE, MD and RMSD of 0.034, -0.016 and 0.046 m3 H2O m-3 soil). De Jong, Saxton and Rawls & Brakensiek models, at –33 kPa soil water matric potential and Gupta & Larson and De Jong models at –1500 kPa soil water matric potential, showed the highest statistic errors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.