For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semiempirical estimates involving extrapolation of thermodynamic data obtained at 25°C (Haas et al., 1995;Wood, 1990a). Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamic properties of even the most common REE minerals. The discrepancies between the predictions of Haas et al. (1995) and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes.
Geologic disposal of spent nuclear fuel in high-capacity metal canisters may reduce the repository footprint, but it may yield high-thermal loads (up to 300 °C). The focus of this experimental work is to expand our understanding of the hydrothermal stability of bentonite clay barriers interacting with metallic phases under different geochemical, mineralogical, and engineering conditions. The hydrothermal experiments were performed using flexible Au/Ti Dickson reaction cells mounted in an externally heated pressure vessel at 150-160 bars and temperatures up to 300 °C for five to six weeks. Unprocessed Wyoming bentonite, containing primarily montmorillonite with minor amount of clinoptilolite, was saturated with a K-Ca-Na-Cl-bearing water (~1900 mg/L total dissolved solids) at a 9:1 water:rock mass ratio. The bentonite and solution combination contained either steel plates or Cu-foils and were buffered to low Eh using magnetite and metallic iron. During reactions, pH, K + , and Ca 2+ concentrations decreased, whereas SiO 2(aq) , Na + , and SO 4 2-concentrations increased throughout the experiments. Pyrite decomposition was first observed at ~210 °C, generating H 2 S (aq,g) that interacted with metal plates or evolves as a gas. The aqueous concentrations of alkali and alkaline earth cations appear to be buffered via montmorillonite and clinoptilolite exchange reactions. Illite or illite/smectite mixed-layer formation was significantly retarded in the closed system due to a limited K + supply along with high Na + and SiO 2(aq) concentrations. Precursor clinoptilolite underwent extensive recrystallization during the six weeks, 300 °C experiments producing a Si-rich analcime in addition to authigenic silica phases (i.e., opal, cristobalite). Analcime and feldspar formation partially sequester aqueous Al 3+ , thereby potentially inhibiting illitization. Associated with the zeolite alteration is a ~17% volume decrease (quartz formation) that translates into ~2% volume loss in the bulk bentonite. These results provide chemical information that can be utilized in extending the bentonite barriers' lifetime and thermal stability. Zeolite alteration mineralogy and illitization retardation under these experimental conditions is important for the evaluation of clay barrier long-term stability in a spent nuclear fuel repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.