The current chapter presents the use of computational fluid dynamics (CFD) for simulating the combustion process taking place in gas turbines. The chapter is based on examples and results from a series of applications developed as part of the research performed by the authors in national and European projects. There are envisaged topics like flame stability, pollutant emission prediction, and alternative fuels in the context of aviation and industrial gas turbines, growing demands for lower fuel consumption, lower emissions, and overall sustainability of such energetic machines. Details on the available numerical models and computational tools are given along with the expectation for further developing CFD techniques in the field. The chapter includes also some comparison between theoretical, numerical, and experimental results.
The main goal of the work presented here was to develop, implement and test a highly efficient numerical algorithm for the evaluation of the chemical reaction source terms that appear in the Navier - Stokes equations when a turbulent, premixed, reactive flow is simulated using a finite rate chemistry combustion model. The approach was based on employing Artificial Neural Networks (ANN) that were designed, trained and incorporated into an existing LEM – LES numerical algorithm. Two numerical simulations of reacting flows have been carried out using several techniques for the estimation of the LES filtered reaction rate for the chemical species in laminar and turbulent, premixed, reactive flows, and the results were compared in terms of numerical accuracy and computational speed. It was concluded that the ANN approach provides a significant speedup of the numerical simulation while preserving acceptable accuracy.
The paper is aimed at evaluating the impact of the combustion model on the accuracy of the results of the numerical simulations of turbulent reactive flows. For this, two numerical simulations of the well known Sandia Flame D case are carried out: a three-dimensional RANS integration of the Navier–Stokes equations using the Eddy Dissipation combustion Model (EDM), and a one-dimensional one, where simplified reaction–diffusion equations are numerically integrated over the radial direction, while the axial convection is modeled by empirical laws. The one-dimensional simulation, however, is based on a more physics related combustion model, the Linear Eddy Mixing model, which also controls the radial turbulent mixing and the large scale radial convection.
The results of the two numerical simulations are compared to experimental data in the literature, showing a significantly better accuracy of the Linear Eddy Mixing (LEM) numerical simulation.
The transient regimes in a combustion chamber has to be as short as possible because flame front position and thickness can destroy the combustion chamber in couple seconds. The simulation of such a regime has to be performed unsteady. An experimental combustion chamber it is simulated at two unsteady regimes to see the flame front structure and comparison it is made with the experimental data to validate the results. For this analysis Ansys CFX was used and the turbulent model was DES while the combustion model was Eddy Dissipation. The two cases show different flame front structures while the boundary conditions for the two regimes are very similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.