We studied the impact of surface hydrophobicity on the motility of actin filaments moving on heavy-meromyosin (HMM)-coated surfaces. Apart from nitrocellulose (NC), which is the current standard for motility assays, all materials tested are good candidates for microfabrication: hydrophilic and hydrophobic glass, poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBuMA), and a copolymer of O-acryloyl acetophenone oxime with a 4-acryloyloxybenzophenone (AAPO). The most hydrophilic (hydrophilic glass, contact angle 35 degrees) and the most hydrophobic (PtBuMA, contact angle 78 degrees) surfaces do not maintain the motility of actin filaments, presumably because of the low density of adsorbed HMM protein or its high levels of denaturation, respectively. The velocity of actin filaments presents higher values in the middle of this "surface hydrophobicity motility window" (NC, PMMA), and a bimodal distribution, which is more apparent at the edges of this motility window (hydrophobic glass and AAPO). A molecular surface analysis of HMM and its S1 units suggests that the two very different, temporally separated conformations of the HMM heads could exacerbate the surface-modulated protein behavior, which is common to all microdevices using surface-immobilized proteins. An explanation for the above behavior proposes that the motility of actin filaments on HMM-functionalized surfaces is the result of the action of three populations of motors, each in a different surface-protein conformation, that is, HMM with both heads working (high velocities), working with one head (low velocities), and fully denatured HMM (no motility). It is also proposed that the molecularly dynamic nature of polymer surfaces amplifies the impact of surface hydrophobicity on protein behavior. The study demonstrates that PMMA is a good candidate for the fabrication of future actomyosin-driven dynamic nanodevices because it induces the smoothest motility of individual nano-objects with velocities comparable with those obtained on NC.
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.
Many areas of biochemistry and molecular biology, both fundamental and applications-orientated, require an accurate construction, representation and understanding of the protein molecular surface and its interaction with other, usually small, molecules. There are however many situations when the protein molecular surface gets in physical contact with larger objects, either biological, such as membranes, or artificial, such as nanoparticles. The contribution presents a methodology for describing and quantifying the molecular properties of proteins, by geometrical and physico-chemical mapping of the molecular surfaces, with several analytical relationships being proposed for molecular surface properties. The relevance of the molecular surface-derived properties has been demonstrated through the calculation of the statistical strength of the prediction of protein adsorption. It is expected that the extension of this methodology to other phenomena involving proteins near solid surfaces, in particular the protein interaction with nanoparticles, will result in important benefits in the understanding and design of protein-specific solid surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.