Auroral particle precipitation potentially plays a main role in ionospheric plasma structuring. The impact of auroral particle precipitation on plasma structuring is investigated using multi-point measurements from scintillation receivers and all sky cameras from Longyearbyen, Ny-Ålesund and Hornsund on Svalbard. This provides us with the unique possibility of studying the spatial and temporal dynamics of the aurora. Here we consider three case studies to investigate how plasma structuring is related to different auroral forms. We demonstrate that plasma structuring impacting the GNSS signals is largest at the edges of auroral forms. Here we studied two stable arcs, two dynamic auroral bands and a spiral. Specifically for arcs we find elevated phase scintillation indices at the pole-ward edge of the aurora. This is observed for auroral oxygen emissions (557.7 nm) at 150~km in the ionospheric E-region. This altitude is also used as the ionospheric piercing point for the GNSS signals as the observations remain the same regardless of different satellite elevations and azimuths. Further, there may be a time delay between the temporal evolution of aurora (f.e. commencement and fading of auroral activity) and observations of elevated phase scintillation indices. The time delay could be explained by the intense influx of particles, which increases the plasma density and causes recombination to carry on longer, which may lead to a persistence of structures - a 'memory effect'. High values of phase scintillation indices can be observed even shortly after strong visible aurora and can then remain significant at low intensities of the aurora.
We investigate the role of auroral particle precipitation in small-scale (below hundreds of meters) plasma structuring in the auroral ionosphere over the Arctic. To the scope, we together analyse data recorded by an Ionospheric Scintillation Monitor Receiver (ISMR) of Global Navigation Satellite System (GNSS) signals and by an All-Sky Camera located in Longyearbyen, Svalbard (Norway). We leverage on the raw GNSS samples provided at 50 Hz by the ISMR to evaluate amplitude and phase scintillation indices at 1 s time resolution and the Ionosphere-Free Linear Combination at 20 ms time resolution. The simultaneous use of the 1 s GNSS-based scintillation indices allows identifying the scale size of the irregularities involved in plasma structuring in the range of small (up to few hundreds of meters) and medium-scale size ranges (up to few kilometers) for GNSS frequencies and observational geometry. Additionally, they allow identifying the diffractive and refractive nature of the found fluctuations on the recorded GNSS signals. Six strong auroral events and their effects on plasma structuring are studied. Plasma structuring down to scales of hundreds of meters are seen when strong gradients in auroral emissions at 557.7 nm cross the line of sight between the GNSS satellite and receiver. Local magnetic field measurements confirm small-scale structuring processes coinciding with intensification of ionospheric currents. Since 557.7 nm emissions primarily originate from the ionospheric E-region, plasma instabilities from particle precipitation at E-region altitudes are considered to be responsible for the signatures of small-scale plasma structuring highlighted in the GNSS scintillation data.
We have characterized spacecraft charging events in low Earth orbit (LEO) polar regions with the Active Monitor Box of Electrostatic Risk (AMBER) instrument onboard the Joint Altimetry Satellite Oceanography Network-3 (Jason-3) ocean topography mission for the first time for this spacecraft. AMBER data, taken at an altitude of 1336 km, over the period January 2017-March 2020, with measurements recorded close to the current solar minimum have been analyzed, using systematic filtering of ions spectrograms with selected threshold energies and time windows to detect negative spacecraft charging events; 109 spacecraft charging events were found. The events are examined visually and characterized by their spatial and temporal location, duration, and intensity (e.g., spacecraft potential). At the Jason-3 altitude (1336 km), the ion signature predominately lasts under 30 s in conjunction with auroral inverted V crossings, while intense fluxes of electrons corresponding to the encounter of the discrete auroral region last between 30 s and 1 min. Most of the detected spacecraft charging events show charging levels between −30 and −1000 V. The spacecraft charging events are located in the magnetic local time (MLT) sector 17h-05h, predominately before midnight. The distribution is equal between the northern and southern hemispheres. We found a high correlation between the charging time profile and that of the auroral electron average energy and energy flux along the satellite path. Overall statistics over three years as well as different event morphologies, electron spectra, and comparisons to worst case electron flux spectral distributions are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.