Challenges to improve toxicological risk assessment to meet the demands of the EU chemical's legislation, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alternative methods such as in vitro assays to predict in vivo dose-response relationships, which impedes their use in regulatory toxicology. One issue reviewed here, is the lack of a well-defined dose metric for use in concentration-effect relationships obtained from in vitro cell assays. Traditionally, the nominal concentration has been used to define in vitro concentration-effect relationships. However, chemicals may differentially and non-specifically bind to medium constituents, well plate plastic and cells. They may also evaporate, degrade or be metabolized over the exposure period at different rates. Studies have shown that these processes may reduce the bioavailable and biologically effective dose of test chemicals in in vitro assays to levels far below their nominal concentration. This subsequently hampers the interpretation of in vitro data to predict and compare the true toxic potency of test chemicals. Therefore, this review discusses a number of dose metrics and their dependency on in vitro assay setup. Recommendations are given on when to consider alternative dose metrics instead of nominal concentrations, in order to reduce effect concentration variability between in vitro assays and between in vitro and in vivo assays in toxicology.
The nominal concentration is generally used to express concentration–effect relationships in in vitro toxicity assays. However, the nominal concentration does not necessarily represent the exposure concentration responsible for the observed effect. Surfactants accumulate at interphases and likely sorb to in vitro system components such as serum protein and well plate plastic. The extent of sorption and the consequences of this sorption on in vitro readouts is largely unknown for these chemicals. The aim of this study was to demonstrate the effect of sorption to in vitro components on the observed cytotoxic potency of benzalkonium chlorides (BAC) varying in alkyl chain length (6–18 carbon atoms, C6–18) in a basal cytotoxicity assay with the rainbow trout gill cell line (RTgill-W1). Cells were exposed for 48 h in 96-well plates to increasing concentration of BACs in exposure medium containing 0, 60 μM bovine serum albumin (BSA) or 10% fetal bovine serum (FBS). Before and after exposure, BAC concentrations in exposure medium were analytically determined. Based on freely dissolved concentrations at the end of the exposure, median effect concentrations (EC50) decreased with increasing alkyl chain length up to 14 carbons. For BAC with alkyl chains of 12 or more carbons, EC50’s based on measured concentrations after exposure in supplement-free medium were up to 25-times lower than EC50’s calculated using nominal concentrations. When BSA or FBS was added to the medium, a decrease in cytotoxic potency of up to 22 times was observed for BAC with alkyl chains of eight or more carbons. The results of this study emphasize the importance of expressing the in vitro readouts as a function of a dose metric that is least influenced by assay setup to compare assay sensitivities and chemical potencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.