Solvers for constraint optimisation problems exploit variable and value ordering heuristics. Numerous expert-designed heuristics exist, while recent research learns novel, customised heuristics from past problem instances. This article addresses unseen problems for which no historical data is available. We propose one-shot learning of customised, problem instance-specific heuristics. To do so, we introduce the concept of deep heuristics, a data-driven approach to learn extended versions of a given variable ordering heuristic online. First, for a problem instance, an initial online probing phase collects data, from which a deep heuristic function is learned. The learned heuristics can look ahead arbitrarily-many levels in the search tree instead of a ‘shallow’ localised lookahead of classical heuristics. A restart-based search strategy allows for multiple learned models to be acquired and exploited in the solver’s optimisation. We demonstrate deep variable ordering heuristics based on the smallest, anti first-fail, and maximum regret heuristics. Results on instances from the MiniZinc benchmark suite show that deep heuristics solve 20% more problem instances while improving on overall runtime for the Open Stacks and Evilshop benchmark problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.