The 2018–2019 Central European drought had a grave impact on natural and managed ecosystems, affecting their health and productivity. We examined patterns in hyperspectral VNIR imagery using an unsupervised learning approach to improve ecosystem monitoring and the understanding of grassland drought responses. The main objectives of this study were (1) to evaluate the application of simplex volume maximisation (SiVM), an unsupervised learning method, for the detection of grassland drought stress in high-dimensional remote sensing data at the ecosystem scale and (2) to analyse the contributions of different spectral plant and soil traits to the computed stress signal. The drought status of the research site was assessed with a non-parametric standardised precipitation–evapotranspiration index (SPEI) and soil moisture measurements. We used airborne HySpex VNIR-1800 data from spring 2018 and 2019 to compare vegetation condition at the onset of the drought with the state after one year. SiVM, an interpretable matrix factorisation technique, was used to derive typical extreme spectra (archetypes) from the hyperspectral data. The classification of archetypes allowed for the inference of qualitative drought stress levels. The results were evaluated using a set of geophysical measurements and vegetation indices as proxy variables for drought-inhibited vegetation growth. The successful application of SiVM for grassland stress detection at the ecosystem canopy scale was verified in a correlation analysis. The predictor importance was assessed with boosted beta regression. In the resulting interannual stress model, carotenoid-related variables had among the highest coefficient values. The significance of the photochemical reflectance index that uses 512 nm as reference wavelength (PRI512) demonstrates the value of combining imaging spectrometry and unsupervised learning for the monitoring of vegetation stress. It also shows the potential of archetypical reflectance spectra to be used for the remote estimation of photosynthetic efficiency. More conclusive results could be achieved by using vegetation measurements instead of proxy variables for evaluation. It must also be investigated how the method can be generalised across ecosystems.
Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes are needed to render studies of extreme events comparable across sites. This requires longer datasets than are available from on-site measurements in order to capture the full range of climatic variability. We present a dataset of drought indices based on precipitation (Standardized Precipitation Index, SPI), atmospheric water balance (Standardized Precipitation Evapotranspiration Index, SPEI), and soil moisture (Standardized Soil Moisture Index, SSMI) for 101 ecosystem sites from the Integrated Carbon Observation System (ICOS) with daily temporal resolution from 1950 to 2021. Additionally, we provide simulated soil moisture and evapotranspiration for each site from the Mesoscale Hydrological Model (mHM). These could be utilised for gap-filling or long-term research, among other applications. We validate our data set with measurements from ICOS and discuss potential research avenues.
Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes are needed to render studies of extreme events comparable across sites. This requires longer datasets than are available from on-site measurements in order to capture the full range of climatic variability. We present a dataset of drought indices based on precipitation (Standardized Precipitation Index, SPI), atmospheric water balance (Standardized Precipitation Evapotranspiration Index, SPEI), and soil moisture (Standardized Soil Moisture Index, SSMI) for 101 ecosystem sites from the Integrated Carbon Observation System (ICOS) with daily temporal resolution from 1950 to 2021. Additionally, we provide simulated soil moisture and evapotranspiration for each site from the Mesoscale Hydrological Model (mHM). These could be utilised for gap-filling or long-term research, among other pplications. We validate our data set with measurements from ICOS and discuss potential research avenues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.