People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Surface topography is a tool to endow biomaterials with bioactive properties. However, the large number of possible designs makes it challenging to find the optimal surface structure to induce a specific cell response. The TopoChip platform is currently the largest collection of topographies with 2176 in silico designed microtopographies. Still, it is exploring only a small part of the design space due to design algorithm limitations and the surface engineering strategy. Inspired by the diversity of natural surfaces, it is assessed as to what extent the topographical design space and consequently the resulting cellular responses can be expanded using natural surfaces. To this end, 26 plant and insect surfaces are replicated in polystyrene and their surface properties are quantified using white light interferometry. Through machine‐learning algorithms, it is demonstrated that natural surfaces extend the design space of the TopoChip, which coincides with distinct morphological and focal adhesion profiles in mesenchymal stem cells (MSCs) and Pseudomonas aeruginosa colonization. Furthermore, differentiation experiments reveal the strong potential of the holy lotus to improve osteogenesis in MSCs. In the future, the design algorithms will be trained with the results obtained by natural surface imprint experiments to explore the bioactive properties of novel surface topographies.
Summary Increasing brown adipose tissue (BAT) mass and activation is a therapeutic strategy to treat obesity and complications. Obese and diabetic patients possess low amounts of BAT, so an efficient way to expand their mass is necessary. There is limited knowledge about how human BAT develops, differentiates, and is optimally activated. Accessing human BAT is challenging, given its low volume and anatomical dispersion. These constraints make detailed BAT-related developmental and functional mechanistic studies in humans virtually impossible. We have developed and characterized functionally and molecularly a new chemically defined protocol for the differentiation of human pluripotent stem cells (hPSCs) into brown adipocytes (BAs) that overcomes current limitations. This protocol recapitulates step by step the physiological developmental path of human BAT. The BAs obtained express BA and thermogenic markers, are insulin sensitive, and responsive to β-adrenergic stimuli. This new protocol is scalable, enabling the study of human BAs at early stages of development.
We previously found that surface topographies induce the expression of the Scxa gene, encoding Scleraxis in tenocytes. Because Scxa is a TGF-β responsive gene, we investigated the link between mechanotransduction and TGF-β signaling. We discovered that mesenchymal stem cells exposed to both micro-topographies and TGF-β2 display synergistic induction of SMAD phosphorylation and transcription of the TGF-β target genes SCXA, a-SMA, and SOX9. Pharmacological perturbations revealed that Rho/ROCK/SRF signaling is required for this synergistic response. We further found an activation of the early response genes SRF and EGR1 during the early adaptation phase on microtopographies, which coincided with higher expression of the TGF-β type-II receptor gene. Of interest, PKC activators Prostratin and Ingenol-3, known for inducing actin reorganization and activation of serum response elements, were able to mimic the topography-induced TGF-β response. These findings provide novel insights into the convergence of mechanobiology and TGF-β signaling, which can lead to improved culture protocols and therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.