Heroin is a highly abused opioid and incurs a significant detriment to society worldwide. In an effort to expand the limited pharmacotherapy options for opioid use disorders, a heroin conjugate vaccine was developed through comprehensive evaluation of hapten structure, carrier protein, adjuvant and dosing. Immunization of mice with an optimized heroin-tetanus toxoid (TT) conjugate formulated with adjuvants alum and CpG oligodeoxynucleotide (ODN) generated heroin ‘immunoantagonism’, reducing heroin potency by >15-fold. Moreover, the vaccine effects proved to be durable, persisting for over eight months. The lead vaccine was effective in rhesus monkeys, generating significant and sustained anti-drug IgG titers in each subject. Characterization of both mouse and monkey anti-heroin antibodies by surface plasmon resonance (SPR) revealed low nanomolar antiserum affinity for the key heroin metabolite, 6-acetylmorphine (6AM), with minimal cross reactivity to clinically-used opioids. Following a series of heroin challenges over six months in vaccinated monkeys, drug-sequestering antibodies caused marked attenuation of heroin potency (>4-fold) in a schedule-controlled responding (SCR) behavioral assay. Overall, these preclinical results provide an empirical foundation supporting the further evaluation and potential clinical utility of an effective heroin vaccine in treating opioid use disorders.
Repeated oral administration of chemopreventive retinoids such as isotretinoin over extended periods of time is associated with intolerable systemic toxicity. Here isotretinoin was formulated as a powder aerosol, and its delivery to the lungs of rats was studied with the aim to explore the possibility of minimizing adverse effects associated with its oral administration. Rats received isotretinoin orally (0.5, 1 or 10 mg kg–1) or by inhalation (theoretical dose ~1 or ~10 mg kg–1) in a nose-only inhalation chamber. Isotretinoin was quantitated by high-pressure liquid chromatography in plasma and lung tissue. The ratios of mean area of concentration-vs-time curve (AUC) values in the lungs over mean AUCs in the plasma for isotretinoin following single or repeated aerosol exposure surpassed those determined for the oral route by factors of between two (single low-dose) and five (single high-dose). Similarly, the equivalent ratios for the maximal peak concentrations in lungs and plasma obtained after aerosol exposure consistently exceeded those seen after oral administration, suggesting that lungs were exposed to higher isotretinoin concentrations after aerosol inhalation than after oral administration of similar doses. Repeated high doses of isotretinoin by inhalation resulted in moderate loss of body weight, but microscopic investigation of ten tissues including lung and oesophagus did not detect any significant aerosol-induced damage. The results suggest that administration of isotretinoin via powder aerosol inhalation is probably superior to its application via the oral route in terms of achieving efficacious drug concentrations in the lungs. © 2000 Cancer Research Campaign
μ-Opioid agonists are clinically effective analgesics, but also produce undesirable effects such as sedation and abuse potential that limit their clinical utility. Glutamatergic systems also modulate nociception and N-methyl D-aspartate (NMDA) receptor antagonists have been proposed as one useful adjunct to enhance the therapeutic effects and/or attenuate the undesirable effects of μ-opioid agonists. Whether NMDA antagonists enhance the antiallodynic effects of μ-agonists in preclinical models of thermal hypersensitivity (i.e. capsaicin-induced thermal allodynia) are unknown. The present study determined the behavioral effects of racemic ketamine, (+)-MK-801, (-)-nalbuphine, and (-)-oxycodone alone and in fixed proportion mixtures in assays of capsaicin-induced thermal allodynia and schedule-controlled responding in rhesus monkeys. Ketamine, nalbuphine, and oxycodone produced dose-dependent antiallodynia. MK-801 was inactive up to doses that produced undesirable effects. Ketamine, but not MK-801, enhanced the potency of μ-agonists to decrease rates of operant responding. Ketamine and nalbuphine interactions were additive in both procedures. Ketamine and oxycodone interactions were additive or subadditive depending on the mixture. Furthermore, oxycodone and MK-801 interactions were subadditive on antiallodynia and additive on rate suppression. These results do not support the broad clinical utility of NMDA receptor antagonists as adjuncts to μ-opioid agonists for thermal allodynic pain states.
Mu-opioid receptor agonists are clinically effective analgesics, but also produce undesirable effects that limit their clinical utility. The nociceptin opioid peptide (NOP) receptor system also modulates nociception, and NOP agonists might be useful adjuncts to enhance the analgesic effects or attenuate the undesirable effects of mu-opioid agonists. The present study determined behavioral interactions between the NOP agonist (-)-Ro 64-6198 and mu-opioid ligands that vary in mu-opioid receptor efficacy (17-cyclopropylmethyl-3,14β-dihyroxy-4,5α-epoxy-6α-[(3′isoquinolyl)acetamindo]morphinan (NAQ) < buprenorphine < nalbuphine < morphine = oxycodone < methadone) in male rhesus monkeys. For comparison, Ro 64-6198 interactions were also examined with the kappa-opioid receptor agonist nalfurafine. Each opioid ligand was examined alone and following fixed-dose Ro 64-6198 pretreatments in assays of thermal nociception (n=3-4) and schedule-controlled responding (n=3). Ro 64-6198 alone failed to produce significant antinociception up to doses (0.32 mg/kg, IM) that significantly decreased rates of responding. All opioid ligands, except NAQ and nalfurafine, produced dose-and thermal intensity-dependent antinociception. Ro 64-6198 enhanced the antinociceptive potency of buprenorphine, nalbuphine, methadone, and nalfurafine. Ro 64-6198 enhancement of nalbuphine antinociception was NOP antagonist SB-612111 reversible and occurred under a narrow range of dose and time conditions. All opioid ligands, except NAQ and buprenorphine, produced dosedependent decreases in rates of responding. Ro 64-6198 did not significantly alter mu-opioid ligand rate-decreasing effects. Although these results suggest that NOP agonists may selectively enhance the antinociceptive vs. rate-suppressant effects of some mu-opioid agonists, this small ✉
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.