Background and Aims: The effect of amino acids, and their interactions with volatiles and other non-volatiles, on inmouth sensory properties of red wines is not known. This knowledge gap has been studied in a series of comprehensive sensory experiments. Methods and Results: A solvent-assisted flavour evaporation extract of Shiraz wine volatiles, a de-aromatised polyphenolic extract and amino acids were added to model wine and wine systems. Using full factorial designs, samples were evaluated by sensory quantitative descriptive analysis. Volatiles enhanced Viscous mouthfeel (F = 20.0, P < 0.001), Sweetness (F = 26.5, P < 0.001) and Body (F = 81.4, P < 0.001), while the phenolic extract directed Astringency (F = 170.5, P < 0.001) as well as Bitterness (F = 7.3, P < 0.001) and suppressed Sweetness (F = 16.5, P < 0.001). An amino acid by volatile interaction (F = 4.2, P < 0.05) was found, and further experiments showed that L-proline enhanced Viscosity (F = 5.0, P < 0.05), Sweetness (F = 14.4, P < 0.001), Red fruit flavour (F = 7.8, P < 0.001) and suppressed Astringency (F = 6.1, P < 0.05) and Bitterness (F = 7.0, P < 0.01), while L-glutamic acid imparted an Umami taste (F = 5.0, P < 0.05) at wine-like concentration. Conclusions: For the first time, these causal experiments showed that amino acids can influence the taste, mouthfeel and flavour of red wine. Significance of the Study: This work provides insight into a new class of wine compounds of sensory significance that can be targeted by producers to directly influence wine flavour.
During the alcoholic fermentation of grape sugars, wine yeast produces a range of secondary metabolites that play a critical role in the aroma profile of wines. One of the most impactful yeast-modified compound families, particularly in white wines, are the ‘fruity’ polyfunctional thiols, which include 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP). While the formation and stylistic contribution of these thiols have been extensively researched in white wines, little is known about the conditions leading to their formation in red wines. In this study, we explored the ability of yeast strains to modulate the release of these aroma compounds during the fermentation of two red musts. In laboratory-scale Pinot Noir fermentations, the formation of 3-MH strongly correlated with yeast β-lyase activity, particularly with the presence of certain genotypes of the flavour-releasing gene IRC7. Subsequent production of Grenache wine at the pilot scale, with detailed compositional and sensory analysis, was undertaken to confirm laboratory-scale observations. A commercial wine strain used for expressing ‘fruity’ thiols in Sauvignon Blanc was shown to produce wines that exhibited more intense red fruit aromas. These results reveal an opportunity for winemakers to shape red wine aroma and flavour by using yeasts that might typically be considered for white wine production.
Background and Aims The sensory experience of wine aroma is challenging to study. Given the presence of numerous and trace level volatiles, the subtle aroma nuances involved, as well as the complexity of human odour processing, the contribution of individual compounds and mixtures can be difficult to determine. In white wines, the volatile compounds eliciting stone fruit aromas are not well understood. Methods and Results Factorial designs were used with odorants added to model wine and assessed using sensory quantitative descriptive analysis. In model Viognier‐like wines, several monoterpenes were confirmed to convey stone fruit attributes Apricot and Peach, which were strongly suppressed by aldehydes which imparted Cardboard‐like odours. Importantly, lactones increased Apricot aroma when combined with the monoterpenes. For model unoaked Australian Chardonnay wine, sensory‐directed screening followed by factorial studies showed that aliphatic ethyl esters, in particular ethyl octanoate, directed Peach aroma. Fatty acids were strong suppressors of the Peach attribute and gave Cheesy odours. Conclusions Apricot and peach aromas in Viognier and Chardonnay, although perceptually similar, were caused by different chemical compound families: grape‐derived monoterpenes with lactones and yeast‐derived fatty acid ethyl esters, respectively. Significance of the Study Having confirmed the compounds responsible for apricot and peach white wine aromas, there is potential to modify their concentration through established viticultural and winemaking practices.
The winemaking by-product grape marc (syn. pomace) contains significant quantities of latent flavour in the form of flavour precursors which can be extracted and used to modulate the volatile composition of wine via chemical hydrolysis. Varietal differences in grapes are widely known with respect to their monoterpene content, and this work aimed to extend this knowledge into differences due to cultivar in volatiles derived from marc precursors following wine-like storage conditions. Marc extracts were produced from floral and non-floral grape lots on a laboratory-scale and from Muscat Gordo Blanco marc on a winery -scale, added to a base white wine for storage over five to six months, before being assessed using a newly developed membrane-assisted solvent extraction gas chromatography-mass spectrometry (GC-MS) method. The geraniol glucoside content of the marc extracts was higher than that of juices produced from each grape lot. In all wines with added marc extract from a floral variety, geraniol glucoside concentration increased by around 150–200%, with increases also observed for non-floral varieties. The relative volatile profile from extracts of the floral varieties was similar but had varied absolute concentrations. In summary, while varietally pure extracts would provide the greatest control over flavour outcomes when used in winemaking, aggregated marc parcels from floral cultivars may provide a mechanism to simplify the production logistics of latent flavour extracts for use in the wine sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.